

Rappresentazione dei numeri

Prof. Salvatore Venticinque Prof. Mauro Iacono

Rappresentazione dei numeri

- Intervallo numerico
- Base di numerazione e numero di cifre
- Approssimazione
- Condizione di overflow
- Condizione di underflow

Rappresentazione dei numeri

- Nel sistema romano ciascuna cifra esprime una quantità indipendente dalla propria posizione MML (2050)
 MDCCLXXXVIII (1988)
- Nel sistema decimale ogni cifra ha un peso variabile a seconda della posizione nel numero (codice)

$$84079 = 8*10^{4} + 4*10^{3} + 0*10^{2} + 7*10^{1} + 9*10^{0} = 80000 + 4000 + 0 + 70 + 9$$

Sistemi di numerazione posizionali

Fissati k simboli si può definire un sistema posizionale in base k.

La base di rappresentazione viene specificata in pedice: $(4791)_{10}$ $(1431)_5$ $(10101)_2$

 Per convertire la rappresentazione di numero da base k a base 10:

> è sufficiente considerare la successione di cifre con il peso nella base k ed eseguire la somma

Esempio:

$$(10101)_2 = 1*24 + 0*23 + 1*22 + 0*21 + 1*20 = 21$$

Conversioni base 2^k ← → base 2

- Conversione diretta
 - Ogni cifra deve essere sostituita con la corrispondente parola codice di k bit
- Conversione inversa
 - Si raggruppano i bit in gruppi di k a partire dal bit meno significativo (da sinistra verso destra)
 - Ogni gruppo deve essere sostituito con la corrispondente cifra.

Esempio:

 $A78F \rightarrow 1010\ 0111\ 1000\ 1111$

della Campania Rappresentazione di Interi Positivi

- Base=2
- Numero di bit=n
- Numero rappresentazioni: 2ⁿ
- Intervallo: [0, 2n[

n=5 → massimo rappresentabile: 2⁵-1=31

5**←→**00101

20**←→** 10100

Addizione

- Quando si verifica la condizione di overflow?
- Qual è il suo significato?

Modulo e Segno

- Rappresentazione interi segno e modulo:
- 1° bit per il segno (1: numeri negativi; 0: numeri positivi)
- Intervallo:]-b_n/2, b_n/2[

```
n=5 → [-15,15]

00000,100000 sono due zeri

15→01111 -15→11111

6 →00110 -6→10110
```

Si opera separatamente su segno e modulo

Operazione Aritmetiche

Rappresentazione modulo e segno

----- Occorre trattare

10100 diversamente numero e segno 10000

Overflow !!!!

La migliore codifica

- Modulo e segno è la migliore codifica?
- Ne esistono altre?
- Quali sono utilizzate nella realtà?

Rappresentazione in complementi alla base

 Una seconda tecnica per la rappresentazione dei numeri relativi consiste nel associare a ciascun numero il suo resto modulo M=2ⁿ, definito come:

$$|x|_{M} = x - [x/M] \times M$$

- Questo tipo di codifica, su n bit, è equivalente ad associare:
 - il numero stesso (cioè X=x), ai numeri positivi compresi tra 0 e 2^{n-1} 1;
 - il numero $X = 2^n |x|$, ai numeri negativi compresi tra 2^{n-1} e 1;
- I numeri rappresentati sono quelli compresi nell'intervallo

 $[-2^{n}/2; 2^{n}/2[$

Complementi alla base

- Intervallo: [-bn/2, bn/2[
- Un solo zero

n=5

X=10 Occorre codificare: 10→01010

X=-10 Occorre codificare: b^n -10=22 \rightarrow 10110

Proprietà:

Come complementare il numero

•Rappresentazione di –b^k 1111111000

Operazioni con le rappresentazioni

La complementazione

- A partire dalla rappresentazione di un numero, è anche particolarmente semplice ottenere la rappresentazione del suo opposto.
 - Complementare tutti i bit a partire da sinistra, tranne
 l'uno più a destra ed eventuali zero successivi.
- E' possibile realizzare le sottrazioni attraverso la composizione di una complementazione (nel senso suddetto) ed un'addizione.
- L'addizionatore e il complementatore rappresentano i componenti fondamentali per la realizzazione di tutte le operazioni.

Esempi di complementazione su 4 bit

- La rappresentazione di 6₁₀ su 4 bit è 0110₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1010₂.
- 1010₂ è la rappresentazione di -6 in complementi alla base.
- La rappresentazione di 5₁₀ su 4 bit è 0101₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1011₂.
- 1011₂ è la rappresentazione di -5 in complementi alla base.
- La rappresentazione di 1₁₀ su 4 bit è 0001₂.
- Complementando tutti i bit tranne l'uno più a destra e gli zero successivi si ottiene: 1111₂.
- 1111₂ è la rappresentazione di -1 in complementi alla base.

Luigi Vanvitelli Operazione per complementi

Basta sommare le rappresentazioni

Risultato=-2

- Quando si verifica la condizione di overflow?
- Qual è il suo significato?

Rappresentazione in virgola fissa dei numeri reali.

- Quando di un numero frazionario si rappresentano separatamente la parte intera e la parte frazionaria si parla di rappresentazione in virgola fissa.
- La rappresentazione dei due contributi (che sono numeri interi) può essere realizzata secondo una delle tecniche viste in precedenza.
- In questo caso la posizione della virgola è fissa e resta sottintesa.

Rappresentazione in virgola mobile dei numeri reali

Un numero reale x può essere rappresentato dalla coppia

(m,e)

tale che:

 $x = m \times be$

dove:

- m è detta mantissa;
- e è detto esponente;
- b è la base di numerazione adottata.
- Il metodo, in questo caso, prende il nome di codifica in virgola mobile.

Normalizzazione

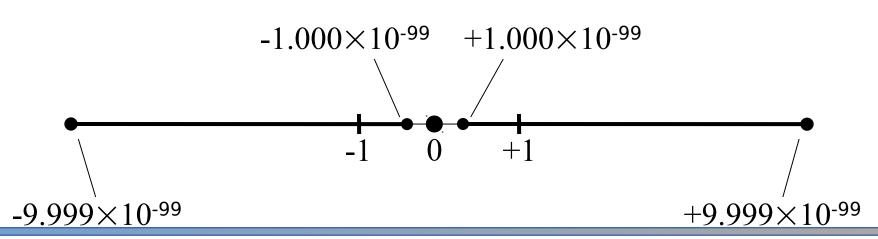
- Per ciascun numero esistono infinite coppie che lo rappresentano.
- Esempio (b=10):
 - 346.09801 è rappresentato da
 - » (346.09801, 0) oppure
 - » (346098.01, -3) oppure
 - » (0.034609801, 4) etc...
- Allo scopo di uniformare le rappresentazioni, si fissa convenzionalmente la posizione della virgola subito dopo la prima cifra significativa, ottenendo l'unico rappresentante:

(3.4609801, 2)

Esempio: intervallo di rappresentazione

 Con b=10, usando 4 cifre per m e 2 per e (più due bit per i relativi segni), l'insieme rappresentabile (utilizzando solo rappresentazioni normalizzate) è:

$$[-9.999 \times 10^{99}, -1.000 \times 10^{-99}] \cup \{0\} \cup [+1.000 \times 10^{-99}] \cup \{0\} \cup [+1.000 \times 10^{-99}]$$



Approssimazione

- Come è facile verificare, in questo tipo di rappresentazione l'approssimazione non è costante.
- In particolare la precisione assoluta è molto spinta in prossimità dello zero e va diminuendo progressivamente a mano a mano che il numero aumenta (in valore assoluto).
- Ad esempio:
 - in prossimità dello zero l'errore massimo che può essere commesso è pari a 1.001x10-99- 1.000x10-99= 0.001x10-99;
 - in prossimità dell'estremo superiore dell'intervallo di rappresentazione, invece, l'errore massimo che si può commettere è 9.999x10⁹⁹-9.998 x10⁹⁹=0.001 x10⁹⁹.
- Si commettono quindi "errori piccoli" su "numeri piccoli" ed "errori grandi" su "numeri grandi".
- Quello che resta inalterato è invece l'errore relativo, costante su tutto l'asse di rappresentabilità.

Overflow e Underflow

- L'errore relativo dipende dal numero di cifre della mantissa.
- Gli estremi dell'intervallo di rappresentazione dipendono dal numero di cifre dell'esponente.
- Nel caso precedente di 2 cifre per l'esponente, si ha overflow per numeri maggiori (in modulo) di 10⁹⁹ e si ha underflow per numeri minori (in modulo) di 10⁻⁹⁹.