
S
a
l
v
a
t
o
r
e
V
e
n
ti
c
i
n
q
u
e

Enhancing Performance
 with Pipelining

Architettura dei Calcolatori Elettronici

Hazards

 …when the next instruction can not execute in the
following clock cycle
 control hazards:

 it arises from the need to make a decision based on the result of one
instruction while others are executing

 e.g. what about branches?

 structural hazards
 the hw can not support the combination of instructions that we want

to execute in the same clock cycle
 e.g. what if we had only one memory?

 data hazards:
 an instruction depends on the result of a previous instruction still in

the pipeline
 e.g. an instruction’s input operand is the output of a previous

instruction

Hazards

 Can always resolve hazards by waiting
 pipeline control must detect the hazard
 and take action to resolve hazards

S
a
l
v
a
t
o
r
e
V
e
n
ti
c
i
n
q
u
e

Data Hazards

Architettura dei Calcolatori Elettronici

Hazards

 …when the next instruction can not execute in the
following clock cycle
 control hazards:

 it arises from the need to make a decision based on the result of one instruction while
others are executing

 e.g. what about branches?

 structural hazards
 the hw can not support the combination of instructions that we want to execute in the

same clock cycle
 e.g. what if we had only one memory?

data hazards:
 an instruction depends on the result of a

previous instruction still in the pipeline
 e.g. an instruction’s input operand is the

output of a previous instruction

Example
add $s0, $t0, $t1

sub $t2, $s0, $t3

 new value of $s0 is unavailable before clock cycle 5
 sub uses the new value of $s0 in clock cycle 2
 sub is dependent on the result of the add

 Read after Write Data Hazard

add

sub

A
L

U IF Reg Mem Reg

A
L

UIF Reg Mem Reg

Solutions

 Operand Forwarding (already addressed in the previous lesson)
 or Bypassing or ShortCircuiting
 Hardware modifications

 Internal Forwarding
 Hibernation of not executable instructions
 A table and additional registers

Internal Forwarding

 Hibernation table
 Forwarding registers
 Operand registers

Hibernation Table

 We can hibernate:
 1 load operation
 1 store operation
 1 boolean operation
 1 division operation
 2 multiplication operation
 2 addition operations

 Only 1 load/store operation
 until a memory access is not concluded, it is impossible to begin another

memory access

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
RegisterRegisters

 Forwarding Registers
 They are used as pointers to Operand

Registers

 Operand Registers
 They contain values

 current values and past values

 Number of suspended operations
 Valid bit

 0 valid
 1 not valid

2
18 00

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

2
18

0

0

 old value of r1 = 18
 old value of r4 = 17

1

17 0

0

N

0

0

18

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

cache miss

MemA 4

18

 Cache miss
 Load is hibernated
 Result will be stored in OPR(4)

104

1 01

17 0 0
2

0

0 018

N

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

MemA 4

4
18

 mul is hibernated
 Result will be stored in OPR(3)

10

2 01

17 0 0

4 N 3

3 1 0

1 018

N

18

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

MemA 4

4
18

 div is hibernated
 Result will be stored in OPR(5)

10

2 01

17 0 0

4 N 3

3

2 0

3 5

01

5

2 018

N

N

18

18

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

MemA 4

4
18

 add is hibernated
 Result will be stored in OPR(0)

10

2 00

17 0 0

4 3

3
2 0

3 5

02

5

5 1 0

01

2 018

N

N

N 18

18

17

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

4
18

 MemA available

10

1 00

17 0 0

4 3

3
2 0

3 5

02

5

5 1 0

01

20

2 018

N

N

N

18

18

17

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

4
18 10

0 00

17 0 0

3

1 0

3 5

02

5

5 1 0

01

20

1 018

N

N 18

17

360

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

4
18 10

0 00

17 0 0

3

0 0

01

5

5 1 0

01

20

0 018

N

17

360

20

Example
lw $r1, MemA

mul $r2, $r1, $r5

div $r3, $r2, $r5

add $r4, $r3, $r4

1° operand 2° operand

RESULT

ADD
ADD
MUL
MUL
DIV
BOO
LOAD

STORE

TAG VALUE TAG VALUE

Forwarding
Register

R0
R1
R2
R3
R4
R5
R6
R7

OPR(0)
OPR(1)
OPR(2)
OPR(3)
OPR(4)
 OPR(5)

........
OPR(N)

Operand
Register

4
18 10

0 00

17 0 0

3
0 0

00

5

00

20

0 018

N

360

20

37

All Data Hazards

 Read After Write
 previous example!

 Read After Read
 No hazards!
 Read operation doesn’t change memory / registers status

 Write After Write
 No hazards!
 2° Write operation is important.

 Write After Read

S
a
l
v
a
t
o
r
e
V
e
n
ti
c
i
n
q
u
e

Control Hazards

Architettura dei Calcolatori Elettronici

Hazards

 …when the next instruction can not execute in the
following clock cycle

control hazards:
 it arises from the need to make a decision

based on the result of one instruction while
others are executing

 e.g. what about branches?
 structural hazards

 the hw can not support the combination of instructions that we want to execute in the
same clock cycle

 e.g. what if we had only one memory?

 data hazards:
 an instruction depends on the result of a previous instruction still in the pipeline
 e.g. an instruction’s input operand is the output of a previous instruction

Control Hazards

 When the flow of instruction addresses is not sequential
 Conditional branches (beq, bne)
 Unconditional branches (j, jal, jr)
 Exceptions

 An instruction must be fetched at every clock cycle to
sustain the pipeline

 The decision about whether to branch doesn’t occur until
the 4° stage

Branch Instructions

I
n
s
t
r.

O
r
d
e
r

lw

Inst 4

Inst 3

beq

A
L

UIF Reg DM Reg

A
L

U

IF Reg DM Reg

A
L

UIF Reg DM Reg

A
L

UIF Reg DM Reg

Time (clock cycles) make the decision

3 instructions feched

Solutions
 Possible approaches

 Stall
 Move decision point as early in the pipeline as possible, thereby

reducing the number of stall cycles
 Reoder instruction
 Predict and hope for the best !

 Control hazards occur less frequently than data hazards, but
there is nothing as effective against control hazards as
forwarding is for data hazards

stall

stall

stall

Stall

I
n
s
t
r.

O
r
d
e
r

beq

A
L

UIM Reg DM Reg

lw

A
L

UIM Reg DM Reg

A
L

U

 Inst 3
IM Reg DM

Fix branch hazard by waiting –
stall – but affects CPITime (clock cycles)

Reducing the delay of Branches

 Move the branch decision hardware back to the EX stage
 Reduces the number of stall (flush) cycles to two
 Adds an and gate and a 2x1 mux to the EX timing path

 Add hardware to compute the branch target address and
evaluate the branch decision to the ID stage
 Reduces the number of stall (flush) cycles to one

 But now need to add forwarding hardware in ID stage

 For deeper pipelines, branch decision points can be even
later in the pipeline, incurring more stalls

Delayed Decision
● If the branch hardware has been moved to the ID stage, then we can

eliminate all branch stalls with delayed branches which are defined as
always executing the next sequential instruction after the branch
instruction – the branch takes effect after that next instruction

– MIPS compiler moves an instruction to immediately after the branch
that is not affected by the branch (a safe instruction) thereby hiding the
branch delay

● With deeper pipelines, the branch delay grows requiring more than one
delay slot

– Delayed branches have lost popularity compared to more expensive but
more flexible (dynamic) hardware branch prediction

– Growth in available transistors has made hardware branch prediction
relatively cheaper

Scheduling Branch Delay Slots

● A is the best choice, fills delay slot and reduces IC
● In B and C, the sub instruction may need to be copied, increasing IC
● In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

Static Branch Prediction
 Resolve branch hazards by assuming a given outcome and

proceeding without waiting to see the actual branch
outcome

1. Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline stall
 If taken, flush instructions after the branch (earlier in the pipeline)

- in IF, ID, and EX stages if branch logic in MEM – three stalls

- In IF and ID stages if branch logic in EX – two stalls

- in IF stage if branch logic in ID – one stall

 ensure that those flushed instructions haven’t changed the machine
state – automatic in the MIPS pipeline since machine state changing
operations are at the tail end of the pipeline (MemWrite (in MEM) or
RegWrite (in WB))

 restart the pipeline at the branch destination

Prediction
 One simple approach is to always predict that branches will

fail
 If it’s right, the pipeline will proceed at full speed
 If it’s wrong, next 3 instructions will be discarded

 A more sophisticated approach is keeping a history for each
branch as taken or untaken and then using the past to
predict the future
 One implementation of this approach is a branch prediction buffer

or branch history table

 is addressed by the lower bits of the PC
 contains a bit passed to the ID stage through the IF/ID pipeline

register that tells whether the branch was taken the last time it
was execute
 Prediction bit may predict incorrectly (may be a wrong prediction for

this branch this iteration or may be from a different branch with the
same low order PC bits) but the doesn’t affect correctness, just
performance

 Branch decision occurs in the ID stage after determining that the fetched
instruction is a branch and checking the prediction bit

 If the prediction is wrong, flush the incorrect instruction(s) in pipeline,
restart the pipeline with the right instruction, and invert the prediction
bit

Branch Prediction Buffer

Branch Target Buffer
 The BHT predicts when a branch is taken, but does not tell

where its taken to!
 A branch target buffer (BTB) in the IF stage can cache the branch

target address, but we also need to fetch the next sequential instruction.
 The prediction bit in IF/ID selects which “next” instruction will be
loaded into IF/ID at the next clock edge

 Would need a two read port instruction memory

 If the prediction is correct, stalls can be avoided no matter
which direction they go

 Or the BTB can cache the
 branch taken instruction while the
instruction memory is fetching the next
sequential instruction

Read
Address

Instruction
MemoryP

C 0

BTB

1-bit Prediction Accuracy
 A 1-bit predictor will be incorrect twice when

not taken
 Assume predict_bit = 0 to start (indicating branch

not taken) and loop control is at the bottom of the
loop code

1. First time through the loop, the predictor mispredicts
the branch since the branch is taken back to the top
of the loop; invert prediction bit (predict_bit = 1)

2. As long as branch is taken (looping), prediction is
correct

3. Exiting the loop, the predictor again mispredicts the
branch since this time the branch is not taken falling
out of the loop; invert prediction bit (predict_bit = 0)

 For 10 times through the loop we have a 80% prediction
accuracy for a branch that is taken 90% of the time

Loop: 1st loop instr
 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

2-bit Predictors
 A 2-bit scheme can give 90% accuracy since a prediction

must be wrong twice before the prediction bit is changed

Predict
Taken

Predict
Not Taken

Predict
Taken

Predict
Not Taken

Taken
Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Loop: 1st loop instr
 2nd loop instr
 .
 .
 .
 last loop instr
 bne $1,$2,Loop
 fall out instr

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Delayed Decision
	Scheduling Branch Delay Slots
	Static Branch Prediction
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35

