Universal Serial Bus

Dispense HTML

Intro 1/3

e Pheripheral Bus

o USB version 1.1 supported two speeds:

— full speed mode of 12Mbits/s
— low speed mode of 1.5Mbits/s.

e USB 2.0

— High Speed mode of 480Mbits/s replaced Firewire Serial
Bus.

Intro 2/3

e Universal Serial Bus is host controlled.

— only one host per bus, not multimaster arrangement.

— USB 2.0 has introduced a Host Negotiation Protocol which allows two devices negotiate for
the role of host (smartphone).
— The USB host is responsible for undertaking all transactions and scheduling bandwidth.

e USB uses a tiered star topology

— This imposes the use of a hub somewhere
— However many devices have USB hubs integrated into them.

e Tiered star topology, rather than simply daisy chaining:

— power to each device can be monitored and even switched off if an overcurrent condition
occurs without disrupting other USB devices

— both high, full and low speed devices can be supported, with the hub filtering out high
speed and full speed transactions so lower speed devices do not receive them.

e Up to 127 devices can be connected to any one USB bus at any one

given time.
— Need more devices? - simply add another port/host.

Intro 3/3

 USB: 0 I_I
- is a serial bus; ‘ I_
| |

0Ol 100010

— uses 4 shielded wires of which two are power (+5v & GND).
- The remaining two are twisted pair differential data signals.

— uses a NRZI (Non Return to Zero Invert) encoding scheme to send data with a sync field to synchronise the host and
receiver clocks.

USB supports plug’n’plug with dynamically loadable and unloadable drivers.
The user plugs the device into the bus.

The host will detect this addition,

interrogate the newly inserted device

and load the appropriate driver.

The loading of the appropriate driver is done using a PID/VID (Product ID/Vendor ID)
combination.

— The VID is supplied by the USB Implementor's forum at a cost

— The latest info on fees can be found on the USB Implementor’s Website

Most chip manufacturers will have a VID/PID combination you can use for your chips
which is known not to exist as a commercial device.

Other chip manufacturers can even sell you a PID to use with their VID for your
commercial device.

e Connectors

- Upstream and downstream connectors are not mechanically interchangea T 1
- Type A sockets will typically find themselves on hosts and hubs.

- The only type A plug to type A plug devices are bridges which are used to connect two computers together.

e Pin Number Cable Colour Function
- 1 Red VBUS (5 volts)
- 2 White D-
- 3 GreenD+
- 4 Black Ground

e Electrical

— USB uses a differential transmission pair for data encoded using NRZI.

— On low and full speed devices, a differential ‘1’ is transmitted by pulling D+ over 2.8V with a 15K ohm
resistor pulled to ground and D- under 0.3V with a 1.5K ohm resistor pulled to 3.6V.

— A differential ‘0’ on the other hand is a D- greater than 2.8V and a D+ less than 0.3V with the same
appropriate pull down/up resistors.

— The receiver defines a differential ‘1’ as D+ 200mV greater than D- and a differential ‘0’ as D+ 200mV less
than D-.

— The polarity of the signal is inverted depending on the speed of the bus.

£

e Speed Identification

- High speed devices will

Full §peed Device

1.8k +- 5%

O+

start by connecting as a full 0

HOST ar HUB

speed device (1.5k to 3.3V). N

DEYICE

o -

T

— Once it has been attached,
establishes via protocol a
high speed connection if the
hub supports it.

1! I_W
| 181 +- 5%
>
18K +- 5%

|
S

Low Speed Device

18K +- 5%

— If the device operates in

high speed mode, thenthe | - :ﬁ,ﬁ
pull up resistor is removed o
to balance the line. .

|||—’W‘
| 18K +- 8%
18k +- 5%

e USB is bus-powered devices

— A USB device specifies its power consumption expressed in 2mA units in the configuration
descriptor.

— A device cannot increase its declared power consumption, even if it looses external power.
e Low power bus powered functions
— draw all its power from the VBUS (max one unit load: 100mA).

— must be designed to work down to a VBUS voltage of 4.40V and up to a maximum voltage of 5.25V.
— For many 3.3V devices, LDO regulators are mandatory.

e High power bus powered functions:

— will draw all its power from the bus and cannot draw more than one unit load until it has been
configured,

— after it can then drain 5 unit loads (500mA Max)
 Self power functions

— may draw up to 1 unit load from the bus and the rest from an external source.

 If VBUS is lost, the device has a lengthy 10 seconds to remove power from
the D+/D- pull-up resistors used for speed identification.

Suspend Mode

e Suspend mode is mandatory on all devices.

- The maximum suspend current is proportional to the unit load.
- For a 1 unit load device (default) the maximum suspend current is 500UA.

« A USB device will enter suspend when there is no activity on the bus for greater than
3.0ms.

e It then has a further 7ms to shutdown and draw no more than the designated suspend
current.

« USB has a start of frame packet or keep alive sent periodically on the bus. This
prevents an idle bus from entering suspend mode in the absence of data.
- A high speed bus will have micro-frames sent every 125.0 us £62.5 ns.
- A full speed bus will have a frame sent down each 1.000 ms +500 ns.

- Alow speed bus will have a keep alive which is a EOP (End of Packet) every 1ms only in the absence of any low
speed data.

e The term "Global Suspend" is used when the entire USB bus enters suspend mode
collectively.

« However selected devices can be suspended by sending a command to the hub that
the device is connected too. This is referred to as a "Selective Suspend."

e The device will resume operation when it receives any non idle signalling.

USB Protocols

e Unlike RS-232 USB is made up of several layers of protocols.
» USB controller will take care of the lower layer, thus making it almost invisible .
e Each USB transaction consists of a

— Token Packet (Header defining what it expects to follow),
— Optional Data Packet, (Containing the payload)
— Status Packet (Used to acknowledge transactions and to provide a means of error correction)

e The host initiates all transactions.
e The first packet, called a token is generated by the host to describe:

- what is to follow
- whether the data transaction will be a read or write
- what the device’s address and designated endpoint is.

» The next packet is generally a data packet carrying the payload

» The last packet is an handshaking packet, reporting if the data or token was
received successfully, or if the endpoint is stalled or not available to accept
data.

USB Packet Fields

e Sync
— All packets must start with a sync field.
— The sync field is 8 bits long at low and full speed
— or 32 bits long for high speed

— is used to synchronise the clock of the receiver with that of
the transmitter.

— The last two bits indicate where the PID fields starts.

Packet ID (PID)

Group PID Value Packet Identifier
0001 OUT Token
Token 1001 IN Token
0101 SOF Token
1101 SETUP Token
0011 DATAO
Data 1011 DATAl
0111 DATAZ
1111 MDATA
0010 ACK Handshake
Handshake 1010 NAK Handshake
1110 STALL Handshake
0110 NYET (No Response Yet)
1100 PREamble
Special LObE ERE‘
1000 Split
0100 Ping

To insure it is received correctly, the 4 bits are complemented and repeated,
making an 8 bit PID in total. The resulting format is shown below.

PIDp PID; PID; PID3 nPIDg nPID; nPID, nPIDs3

Packet Fields

ADDR

— Specifies which device the packet is designated for. Being 7 bits in length allows
for 127 devices to be supported.

— Address 0 is not valid, as any device which is not yet assigned an address must
respond to packets sent to address zero.

ENDP

— The endpoint field is made up of 4 bits, allowing 16 possible endpoints. Low
speed devices, however can only have 2 additional endpoints on top of the
default pipe. (4 endpoints max)

e CRC

— Cyclic Redundancy Checks are performed on the data within the packet payload.
All token packets have a 5 bit CRC while data packets have a 16 bit CRC.

« EOP

— End of packet. Signalled by a Single Ended Zero (SEO) for approximately 2 bit
times followed by a J for 1 bit time

Packet Types: Token packets

e |INn

— Informs the USB device that the host wishes to read
information.

e Out

— Informs the USB device that the host wishes to send
information.

e Setup

— Used to begin control transfers.

e Token Packets must conform to the following
format:

Sync PID ADDR ENDP CRC5 EOP

Data Packets

e There are two types of data packets each capable of
transmitting up to 1024 bytes of data.

— Data0
- Datal
— High Speed mode defines another two data PIDs, DATA2 and MDATA.

e Data packets have the following format,

Sync PID Data CRC16 EOP
Maximum data payload size for low-speed devices is 8
bytes.
Maximum data payload size for full-speed devices is 1023
bytes.
Maximum data payload size for high-speed devices is 1024
bytes.

Data must be sent in multiples of bytes.

Handshake Packets

e There are three type of handshake packets
which consist simply of the PID

— ACK - Acknowledgment that the packet has been
successfully received.

— NAK - Reports that the device temporary cannot send or
received data. Also used during interrupt transactions to
inform the host there is no data to send.

— STALL - The device finds its in a state that it requires
intervention from the host.

 Handshake Packets have the following format,

Sync PID EOP

Start of Frame

e The SOF packet consisting of an 11-bit frame
number is sent by the host:

— every 1ms £ 500ns on a full speed bus
— or every 125 pus £ 0.0625 us on a high speed bus.

Sync PID Frame Number CRC5 EOP

USB Functions

o USB devices provide a capability or function
such as a Printer, Zip Drive, Scanner, Modem or
other peripheral.

e Most functions will have a series of buffers, typically 8 bytes long.
o Each buffer will belong to an endpoint - EPO IN, EPO OUT etc.
o Say for example, the host sends a device descriptor request.

1) The function hardware will read the setup packet
2) determine from the address field whether the packet is for itself,

3) if so will copy the payload of the following data packet to the appropriate endpoint
buffer dictated by the value in the endpoint field of the setup token.

4) It will then send a handshake packet to acknowledge the reception of the byte

5) and generate an internal interrupt within the semiconductor/micro-controller for
the appropriate endpoint signifying it has received a packet.

e This is typically all done in hardware.

e The software now gets an interrupt, and should read the contents
of the endpoint buffer and parse the device descriptor request.

Endpoints and Pipes

e Endpoints

Can be described as sources or sinks of data.
Endpoints occur at the end of the communications channel at the USB function.
Device driver may send a packet to your devices EP1 — the firmware will then at its leisyre read this data.

If it wants to return data, the function writes data to EP1 IN which sits in the buffer until such time when the
host sends a IN packet to that endpoint requesting the data.

Endpoints can also be seen as the interface between the hardware of the function device and the firmware
running on the function device.

All devices must support endpoint zero. This is the endpoint which receives all of the devices control and
status requests during enumeration and throughout the duration while the device is operational on the bus.

e Pipes

A pipe is a logical connection between the host and endpoint(s).
The device sends and receives data on a series of endpoints,
The client software transfers data through pipes.

Pipes will also have a set of parameters: allocated bandwidth, transfer type, a direction of data flow, maximum
packet/buffer sizes.

« USB defines two types of pipes

- Stream Pipes have: no defined USB format. Data flows sequentially and has a pre-defined direction, either in or

out. Stream pipes can either be controlled by the host or device.
Message Pipes have a defined USB format. They are host controlled, which are initiated by a request sent from

the host. Data is then transferred in the desired direction, dictated by the request. Therefore message pipes

allow data to flow in both directions but will only support control transfers

Endpoint Types

e The Universal Serial Bus specification defines
four transfer/endpoint types,

— Control Transfers

— Interrupt Transfers

— Isochronous Transfers
— Bulk Transfers

Control Transfers

o Control transfers are typically used for command and status
operations.

e They are essential to set up a USB devices

e They are typically bursty, random packets which are initiated by
the host and use best effort delivery.
e The packet length of control transfers
— in low speed devices must be 8 bytes,
— high speed devices allow a packet size of 8, 16, 32 or 64 bytes
— full speed devices must have a packet size of 64 bytes.
e A control transfer can have up to three stages.
— Setup Stage :

—w] SETUP | DATAD | ACK | —p

— Data Stage

Data Errar
-

— Handshake Stage ST e

Token Packet ' Data Packet ' Handshake Packet

Control Transfers: Setup Stage

« The Setup Stage consists of three packets.

— The setup token contains the address and endpoint number.

— The data packet has a PID type of dataO and includes details the
type of request

— An handshake used for acknowledging successful receipt or to
indicate an error.
o If the function successfully receives the setup data it
responds with ACK,

e otherwise it ignores the data and doesn’t send a
handshake packet. - -

— ZETUP —n| DATA O ol ACK | —

DOaa Error
EpTokey Bror

-
-

Token Packet ' Data Packet ' Handshake Packet

Control Transfer: Data Stage

e The optional Data Stage consists of one or multiple IN or
OUT transfers.

e IN: the host is ready to receive control data.

If the function receives the IN token with an error, it ignores the packet.
Otherwise it can either reply:

¥

[T

« with a DATA packet containing the control data

¥

ALK

!

o a STALL packet indicating the endpoint has had a error
» or a NAK packet indicating that temporarily has no data to send.

e QOUT the host want to send data to the function:

-

STALL

D33 Error

Ty

Ak

In Tioka b Errar

T ¥

OUT token followed by a data packet with control data as the payload. — our

(KN

L 4

ALK

—-

If the OUT token or data packet is corrupt the function ignores the packet.

If the function's endpoint buffer was empty and it stored the data into the
endpoint buffer it issues an ACK.

If the endpoint buffer is not empty, then the function returns a NAK.
However if the endpoint had a error it returns a STALL.

e Data are sent in multiple transfers, each being the
maximum packet length except for the last packet

Token F adcet

[rata Packet

MAK

—

-

STALL

—»

DagEmer

E Handshake Packet

Control Transfer: Status Stage

 Status Stage reports the status of the overall
request and this varies due to direction of transfer.

 Status reporting is always performed by the

function.
N I N: - auT - Zaro Length > ALK
— The host acknowledges the successful recept sending an OUT " STALL
token followed by a zero length data packet. prcseeng [

— The function can now report its status:
— An ACK indicates it is ready to accept another command.
— If an error occurred then the function will issue a STALL.

— However if the function is still processing, it returns a NAK.

e« OUT:
Nomal
. . . Compl o DATAD
— the function will acknowledge the successful receipt of data by —=| ™ *|zero Lengtn || ACK
sending a zero length packet in response to an IN token. oo [
— If an error occurred, it should issue a STALL processhg
= I A —

— If it is still busy processing data, it should issue a NAK

Control Tranfer: An Example

e The first USB transaction to ask the Device
Descriptor Request

1. Setup Address &

Token Sync PID ADDR ENDP CRES EOP Endpoint Number
2. Data0O Device Descriptor
Packet Sync PID Data0 CRC16 EOP T

3. Ack Device Ack. Setup
Handshake Sync PID EOP Packet

— The USB device decodes the 8 bytes received, and determines it was a device descriptor
request.

— The device will then attempt to send the Device Descriptor, which will be the next USB
transaction

Returning the Device Description Request

e The IN token tells the device it
can send data for th endpoint.

12 bytes data are splitin 2
chunks of 8 bytes

The host acknowledges every
data packet.

A status transaction follows.

If the transactions were
successful, the host will send a
zero length packet.

e The function then replies
indicating its status.

1. In Token

2. Datal
Packet

3. Ack
Handshake

1. In Token

2. DataO
Packet

3. Ack
Handshake

1. Out Token

2. Datal
Packet

3. Ack
Handshake

Sync

Sync

Sync

Sync

Sync

Sync

Sync PID ADDR ENDP

Sync PID

Sync PID

PID

PID

PID

PID

PID

PID

ADDR ENDP

Datal

EOP

ADDR ENDP

Data0O

EOP

Datal

EOP

CRCS

CRC16

CRC5

CRC16

CRCS

CRC16

EOP

EOP

EOP

EOP

EOP

EOP

Address &
Endpoint Number

First 8 Bytes of
Device Descriptor

Host Acknowledges
Packet

Address &
Endpoint Number

Last 4 bytes +
Padding

Host Acknowledges
Packet

Address &
Endpoint Number

Zero Length
Packet

Device Ack. Entire
Transaction

Interrupt Transfer

e Under USB if a device requires the attention of the
host, it must wait until the host polls it before it can
report that it needs urgent attention!

e An Interrupt request is queued by small device until
the host polls the USB device asking for data.

— Guaranteed Latency
— Stream Pipe - Unidirectional
— Error detection and next period retry.

« Maximum Payload size:
— For low-speed devices is 8 bytes.
— For full-speed devices is 64 bytes.
— For high-speed devices is 1024 bytes.

Interrupt Transactions (IN)

o The host will periodically poll the
interrupt endpoint by sending an IN
Token.

 This rate of polling is specified in the
endpoint descriptor.

e The function can:

— ignores the packet and wait for new tokens if |
is corrupted.

— Returns a data packet if it needs attention
— NACK if it does not need attention
— STALL in case of error.

e The host will return

— an ACK if everything is ok.
— no status if data is corrupted.

Ias
L

—# Success

—— it

[ata Emor

= Mo Intermupt Pending

: = In Token BEmor

— ouT

¥

DATA =

ALK

— Success

Token Packet |

[rata P acket

RA

— Failure

s

STALL

—® Halt

e ETor

E Handzhake P acket

Interrupt OUT Transactions

e The host issues an OUT

token followed by a data —tt o s e

packet containing the SE

interrupt data. o e s s
e The function: e

— ignores the packet in case of -
error STALL

- ACK if the endpoint buffer is ronpadat | vatapadat | Handehke pacet
empty and data is stored

— NACK if the endpoint buffer is
not empty

— STALL if an error occurred.

Isochronous Transfers

 Isochronous transfers occur continuously and periodically.
» They typically contain time information such as an audio or video stream.

- A delay or retry of data in an audio stream cause audio glitches. The beat may no longer be in sync.
- However it is less likely to be noticed by the listener the loss of a packet.
 Isochronous Transfers provide

Guaranteed access to USB bandwidth. —* N

Bounded latency.

DATS = |—m=

b

— OUT DATA x| —=

L

Stream Pipe - Unidirectional !
Token Facket | Data Packet

Error detection via CRC, but no retry or guarantee of delivery.
— Full & high speed modes only.
- No data toggling.

« The maximum size data payload is specified in the endpoint descriptor of an
Isochronous Endpoint.
- Maximum of 1023 bytes for a full speed device and 1024 bytes for a high speed device.
— It is wise to specify a conservative payload size.

— If you are using a large payload, it may also be to your advantage to specify a series of alternative interfaces with
varying isochronous payload sizes.

— The host cannot enable your preferred isochronous endpoint due to bandwidth restrictions, or to fall back on
rather than just failing completely.

« Transactions do not have a handshaking stage.

Bulk Transfers

Can be used for large bursty data (Printers, Scanners, Mass Storages)

Bulk transfers will use spare un-allocated bandwidth on the bus.

—~ Used to transfer large bursty data. — " MUPATAE LR T
- Error detection via CRC, with guarantee of delivery. Ll sTALL e
- No guarantee of bandwidth or minimum latency. — .
- Stream Pipe - Unidirectional | L nTemem
- Full & high speed modes only.
— auT B DATA = - ALK —-
 Bulk transfers are only supported by full and high speed devices. —
e —
e [N:
el STALL |—=
- When the host is ready to receive bulk data it issues an IN Token. —
- The function receives the IN token with an error, it ignores the packet .

Token Fadcet Lata Packet Handshake Facket

If the token was received correctly, the function can either reply with a DATA packet

A STALL packet indicating the endpoint has had a error

NAK packet indicating to the host that the endpoint is working, but temporary has no data to send.
OUT:
An OUT token followed by a data packet containing the bulk data.

If the OUT token or data packet is corrupt then the function ignores the packet.

If the function's endpoint buffer was empty and it has clocked the data into the endpoint buffer it issues an ACK

If the endpoint buffer is not empty the function returns an NAK.

If the endpoint has had an error it returns a STALL.

Bandwidth Management

e The host is responsible for managing the bandwidth of
the bus.

e This is done at enumeration when configuring
Isochronous and Interrupt Endpoints and throughout
the operation of the bus.

e The specification places limits on the bus:

— No more than 90% of any frame to be allocated for periodic transfers
(Interrupt and Isochronous) on a full speed bus.

— No more than 80% on high speed buses for periodic transfers.

e The remaining 10% is left for control transfers

e once those have been allocated, bulk transfers will get
their slice of what is left.

Device Descriptor

DeviceDescriptor

bMumConfigurations

!

Configuration
Cre=criptor

bHumlintedaces

v

Interface
Cre=criptor

Interface
Crescriptor

| bHumEndpoints

'

|I:-HumEn-:I|:n:nin13

' '

'

'

Configuration
Cre=criptor

bHumlintefaces

'

Interface
Crezcriptor

|I:-NumEn-:I|:u:nin15

!

Y

Interface
Crezcriptor

| bHumEndpoints

'

:

Endpoint
Crescriptor

Endpaint
Cre=criptor

Endpaint
Cre=criptor

Endpaint

Cre=criptor

Endpaint
Cre=criptor

Endpoint

Cre=criptor

Endpaint
Cre=criptor

Endpoint
Cre=criptor

10

12

14

15

16

17

Field

bLength

bDescriptorType

bcdUSB

bDeviceClass

bDeviceSubClass

bDeviceProtocol

bMaxPacketsSize

idvendor

idProduct

bcdDevice

iManufacturer

iProduct

iSerialNumber

bNumConfigurations

MNumber

Constant

BCD

Class

SubClass

Protocol

MNumber

BCD

Index

Index

Index

Integer

Description

Size of the Descriptor in Bytes (18 bytes)

Device Descriptor (0x01)

USB Specification Number which device
complies too.

Class Code (Assigned by USB Org)

If equal to Zero, each interface specifies
it's own class code

If equal to 0xFF, the class code is vendor
specified.

Otherwise field is valid Class Code.
Subclass Code (Assigned by USB Org)

Protocol Code (Assigned by USB Org)

Maximum Packet Size for Zero Endpoint.
Valid Sizes are 8, 16, 32, 64

Vendor ID (Assigned by USB Org)

Product 1D {Assigned by Manufacturer)

Device Release Number

Index of Manufacturer String Descriptor

Index of Product String Descriptor

Index of Serial Number String Descriptor

Number of Possible Configurations

Configuration Descriptor

The configuration descriptor specifies:
* how the device is powered,
« what the maximum power consumption is,

* the number of interfaces it has.

Configuration Descriptor

—ae|Interface Zero D escriptor, bAlernateSetting =0

Endpaint Descriptor One

Endpoint Descriptar Tweo

—ae [nterface One Descriptor, bAlternateSetting =0

Endpoint Descriptor One

[Interrupt Pipes)
Endpaint Descriptor Twwo

—] Interface O ne Descriptor, bAlternate S etting = 1

Endpoint Descriptor One

(Bulk Fipes)
Endpoint Descriptor Twwo

Configuration Descriptor

Description
0 bLength 1 MNumber Size of Descriptor in Bytes
1 bDescriptorType 1 Constant Configuration Descriptor (0x02)
2 wTotalLength 2 Number Total length in bytes of data returned
4 bNuminterfaces 1 Number Number of Interfaces

Value to use as an argument to select this

5 bConfigurationValue 1 Number .
configuration

Index of String Descriptor describing this

6 iConfiguration 1 Index q
configuration

D7 Reserved, setto 1. (USB 1.0 Bus
Powered)

7 bmAttributes 1 Bitmap D& Self Powered
D5 Remote Wakeup

D4..0 Reserved, set to 0.

8 bMaxPower 1 mA Maximum Power Consumption in 2mA units

USB 3.0 - 3.1

« USB 3.0
5 6 7 8 9
— il bus "SuperSpeed", a 4,8 Gbit/s, (corrispondenti a 600 i
MB/s, fino a dieci volte piu veloce della versione USB 2.0) ypen
Pin | Nome segnale Descrizione
6 |SSTA+ Il trasferimento dei dati dall'host al dispositivo
7 | SSTk- SSTX+ ritorno
8 |GND GND
9 | SSRX+ Il rasferimento dei dati dal dispositivo all'host
o USB 31 10 | SSRX- SSRX+ ritorno

— 10Gbp/s, rispetto ai 480Mbp/s della tecnologia USB 2.0.

— supporta vari profili energetici, tra cui uno a 12V, 20V a 5A
(60W, 100W)

— Permette di ricaricare /alimentare praticamente la maggior
parte dei dispositivi elettronici, non solo quelli mobili

— Double faces

Endpoint Descriptor

3

6

Field F. Value
bLength 1 Number
bDescriptorType 1 Constant
bEndpointAddress 1 Endpoint
brmAttributes 1 Bitmap
wMaxPacketSize 2 Number
binterval 1 Number

Description

Size of Descriptor in Bytes (7 bytes)

Endpoint Descriptor (0x05)

Endpoint Address

Bits 0..3b Endpoint Number.

Bits 4..6b Reserved. Set to Zero

Bits 7 Direction 0 = Out, 1 = In (Ignored for
Control Endpoints)

Bits 0..1 Transfer Type

00 = Control
01 = Isochronous
10 = Bulk

11 = Interrupt
Bits 2..7 are reserved. If Isochronous
endpoint,
Bits 3..2 = Synchronisation Type (Iso Mode)
00 = No Synchonisation
01 = Asynchronous
10 = Adaptive
11 = Synchronous
Bits 5..4 = Usage Type (Iso Mode)
00 = Data Endpoint
01 = Feedback Endpoint
10 = Explicit Feedback Data Endpoint
11 = Reserved

Maximum Packet Size this endpoint is
capable of sending or receiving

Interval for polling endpoint data transfers.
Value in frame counts. Ignored for Bulk &
Control Endpoints. Isochronous must equal 1
and field may range from 1 to 255 for
interrupt endpoints.

Alternative configurations

Crevice Descriptor

= Configuration Descriptor One

-

Interface Zero Descriptor

Endpaint Descriptor One

Erndpaint Descriptor Twa

—

Interface One Descriptar

Endpoint Descriptor One

Endpoint Descriptor Two

- Configuration Descriptor Two

L

Interface Zero Descriptor

SN

HID Descriptar

—

Erndpaint Descriptor One

ConfigurationCrescriptord
-=mTotallength

ConfigurationDescriptors
-=nTotallength

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

