
Salvatore Venticinque

Universal Serial Bus

Dispense HTML

Intro 1/3
● Pheripheral Bus

● USB version 1.1 supported two speeds:
– full speed mode of 12Mbits/s

– low speed mode of 1.5Mbits/s.

● USB 2.0
– High Speed mode of 480Mbits/s replaced Firewire Serial

Bus.

Intro 2/3
● Universal Serial Bus is host controlled.

– only one host per bus, not multmaster arrangement.

– USB 2.0 has introduced a Host Negotaton Protocol which allows two devices negotate for
the role of host (smartphone).

– The USB host is responsible for undertaking all transactons and scheduling bandwidth.

● USB uses a tered star topology
– This imposes the use of a hub somewhere

– However many devices have USB hubs integrated into them.

● Tiered star topology, rather than simply daisy chaining:
– power to each device can be monitored and even switched of if an overcurrent conditon

occurs without disruptng other USB devices

– both high, full and low speed devices can be supported, with the hub fltering out high
speed and full speed transactons so lower speed devices do not receive them.

● Up to 127 devices can be connected to any one USB bus at any one
given tme.
– Need more devices? - simply add another port/host.

Intro 3/3
● USB:

– is a serial bus;

– uses 4 shielded wires of which two are power (+5v & GND).

– The remaining two are twisted pair diferental data signals.

– uses a NRZI (Non Return to Zero Invert) encoding scheme to send data with a sync feld to synchronise the host and
receiver clocks.

● USB supports plug’n’plug with dynamically loadable and unloadable drivers.
– The user plugs the device into the bus.

– The host will detect this additon,

– interrogate the newly inserted device

– and load the appropriate driver.

● The loading of the appropriate driver is done using a PID/VID (Product ID/Vendor ID)
combinaton.
– The VID is supplied by the USB Implementor's forum at a cost

– The latest info on fees can be found on the USB Implementor’s Website

● Most chip manufacturers will have a VID/PID combinaton you can use for your chips
which is known not to exist as a commercial device.

● Other chip manufacturers can even sell you a PID to use with their VID for your
commercial device.

● Connectors
– Upstream and downstream connectors are not mechanically interchangeable,

– Type A sockets will typically fnd themselves on hosts and hubs.

– The only type A plug to type A plug devices are bridges which are used to connect two computers together.

● Pin Number Cable Colour Functon
– 1 Red VBUS (5 volts)

– 2 White D-

– 3 Green D+

– 4 Black Ground

● Electrical
– USB uses a diferental transmission pair for data encoded using NRZI.

– On low and full speed devices, a diferental ‘1’ is transmited by pulling D+ over 2.8V with a 15K ohm
resistor pulled to ground and D- under 0.3V with a 1.5K ohm resistor pulled to 3.6V.

– A diferental ‘0’ on the other hand is a D- greater than 2.8V and a D+ less than 0.3V with the same
appropriate pull down/up resistors.

– The receiver defnes a diferental ‘1’ as D+ 200mV greater than D- and a diferental ‘0’ as D+ 200mV less
than D-.

– The polarity of the signal is inverted depending on the speed of the bus.

● Speed Identfcaton
– High speed devices will

start by connectng as a full
speed device (1.5k to 3.3V).

– Once it has been atached,
establishes via protocol a
high speed connecton if the
hub supports it.

– If the device operates in
high speed mode, then the
pull up resistor is removed
to balance the line.

● USB is bus-powered devices
– A USB device specifes its power consumpton expressed in 2mA units in the confguraton

descriptor.

– A device cannot increase its declared power consumpton, even if it looses external power.

● Low power bus powered functons
– draw all its power from the VBUS (max one unit load: 100mA).

– must be designed to work down to a VBUS voltage of 4.40V and up to a maximum voltage of 5.25V.

– For many 3.3V devices, LDO regulators are mandatory.

● High power bus powered functons:
– will draw all its power from the bus and cannot draw more than one unit load untl it has been

confgured,

– afer it can then drain 5 unit loads (500mA Max)

● Self power functons
– may draw up to 1 unit load from the bus and the rest from an external source.

● If VBUS is lost, the device has a lengthy 10 seconds to remove power from
the D+/D- pull-up resistors used for speed identfcaton.

Suspend Mode
● Suspend mode is mandatory on all devices.

– The maximum suspend current is proportonal to the unit load.

– For a 1 unit load device (default) the maximum suspend current is 500uA.

● A USB device will enter suspend when there is no actvity on the bus for greater than
3.0ms.

● It then has a further 7ms to shutdown and draw no more than the designated suspend
current.

● USB has a start of frame packet or keep alive sent periodically on the bus. This
prevents an idle bus from entering suspend mode in the absence of data.
– A high speed bus will have micro-frames sent every 125.0 µs ±62.5 ns.

– A full speed bus will have a frame sent down each 1.000 ms ±500 ns.

– A low speed bus will have a keep alive which is a EOP (End of Packet) every 1ms only in the absence of any low
speed data.

● The term "Global Suspend" is used when the entre USB bus enters suspend mode
collectvely.

● However selected devices can be suspended by sending a command to the hub that
the device is connected too. This is referred to as a "Selectve Suspend."

● The device will resume operaton when it receives any non idle signalling.

USB Protocols
● Unlike RS-232 USB is made up of several layers of protocols.

● USB controller will take care of the lower layer, thus making it almost invisible .

● Each USB transacton consists of a
– Token Packet (Header defning what it expects to follow),

– Optonal Data Packet, (Containing the payload)

– Status Packet (Used to acknowledge transactons and to provide a means of error correcton)

● The host initates all transactons.

● The frst packet, called a token is generated by the host to describe:
– what is to follow

– whether the data transacton will be a read or write

– what the device’s address and designated endpoint is.

● The next packet is generally a data packet carrying the payload

● The last packet is an handshaking packet, reportng if the data or token was
received successfully, or if the endpoint is stalled or not available to accept
data.

USB Packet Fields
● Sync

– All packets must start with a sync feld.

– The sync feld is 8 bits long at low and full speed

– or 32 bits long for high speed

– is used to synchronise the clock of the receiver with that of
the transmiter.

– The last two bits indicate where the PID felds starts.

Packet ID (PID)

To insure it is received correctly, the 4 bits are complemented and repeated,
making an 8 bit PID in total. The resulting format is shown below.

Packet Fields
● ADDR

– Specifes which device the packet is designated for. Being 7 bits in length allows
for 127 devices to be supported.

– Address 0 is not valid, as any device which is not yet assigned an address must
respond to packets sent to address zero.

● ENDP
– The endpoint feld is made up of 4 bits, allowing 16 possible endpoints. Low

speed devices, however can only have 2 additonal endpoints on top of the
default pipe. (4 endpoints max)

● CRC
– Cyclic Redundancy Checks are performed on the data within the packet payload.

All token packets have a 5 bit CRC while data packets have a 16 bit CRC.

● EOP
– End of packet. Signalled by a Single Ended Zero (SE0) for approximately 2 bit

tmes followed by a J for 1 bit tme

Packet Types: Token packets
● In

– Informs the USB device that the host wishes to read
informaton.

● Out
– Informs the USB device that the host wishes to send

informaton.

● Setup
– Used to begin control transfers.

● Token Packets must conform to the following
format:

Data Packets
● There are two types of data packets each capable of

transmitng up to 1024 bytes of data.
– Data0

– Data1

– High Speed mode defnes another two data PIDs, DATA2 and MDATA.

● Data packets have the following format,

● Maximum data payload size for low-speed devices is 8
bytes.

● Maximum data payload size for full-speed devices is 1023
bytes.

● Maximum data payload size for high-speed devices is 1024
bytes.

● Data must be sent in multiples of bytes.

Handshake Packets
● There are three type of handshake packets

which consist simply of the PID
– ACK - Acknowledgment that the packet has been

successfully received.

– NAK - Reports that the device temporary cannot send or
received data. Also used during interrupt transactons to
inform the host there is no data to send.

– STALL - The device fnds its in a state that it requires
interventon from the host.

● Handshake Packets have the following format,

Start of Frame
● The SOF packet consistng of an 11-bit frame

number is sent by the host:
– every 1ms ± 500ns on a full speed bus

– or every 125 µs ± 0.0625 µs on a high speed bus.

USB Functons
● USB devices provide a capability or functon

such as a Printer, Zip Drive, Scanner, Modem or
other peripheral.

● Most functons will have a series of bufers, typically 8 bytes long.

● Each bufer will belong to an endpoint - EP0 IN, EP0 OUT etc.

● Say for example, the host sends a device descriptor request.
1) The functon hardware will read the setup packet

2) determine from the address feld whether the packet is for itself,

3) if so will copy the payload of the following data packet to the appropriate endpoint
bufer dictated by the value in the endpoint feld of the setup token.

4) It will then send a handshake packet to acknowledge the recepton of the byte

5) and generate an internal interrupt within the semiconductor/micro-controller for
the appropriate endpoint signifying it has received a packet.

● This is typically all done in hardware.

● The sofware now gets an interrupt, and should read the contents
of the endpoint bufer and parse the device descriptor request.

Endpoints and Pipes
● Endpoints

– Can be described as sources or sinks of data.

– Endpoints occur at the end of the communicatons channel at the USB functon.

– Device driver may send a packet to your devices EP1 → the frmware will then at its leisyre read this data.

– If it wants to return data, the functon writes data to EP1 IN which sits in the bufer untl such tme when the
host sends a IN packet to that endpoint requestng the data.

– Endpoints can also be seen as the interface between the hardware of the functon device and the frmware
running on the functon device.

– All devices must support endpoint zero. This is the endpoint which receives all of the devices control and
status requests during enumeraton and throughout the duraton while the device is operatonal on the bus.

● Pipes
– A pipe is a logical connecton between the host and endpoint(s).

– The device sends and receives data on a series of endpoints,

– The client sofware transfers data through pipes.

– Pipes will also have a set of parameters: allocated bandwidth, transfer type, a directon of data fow, maximum
packet/bufer sizes.

● USB defnes two types of pipes
– Stream Pipes have: no defned USB format. Data fows sequentally and has a pre-defned directon, either in or

out. Stream pipes can either be controlled by the host or device.

– Message Pipes have a defned USB format. They are host controlled, which are initated by a request sent from
the host. Data is then transferred in the desired directon, dictated by the request. Therefore message pipes
allow data to fow in both directons but will only support control transfers

Endpoint Types
● The Universal Serial Bus specifcaton defnes

four transfer/endpoint types,
– Control Transfers

– Interrupt Transfers

– Isochronous Transfers

– Bulk Transfers

Control Transfers
● Control transfers are typically used for command and status

operatons.

● They are essental to set up a USB devices

● They are typically bursty, random packets which are initated by
the host and use best efort delivery.

● The packet length of control transfers
– in low speed devices must be 8 bytes,

– high speed devices allow a packet size of 8, 16, 32 or 64 bytes

– full speed devices must have a packet size of 64 bytes.

● A control transfer can have up to three stages.
– Setup Stage

– Data Stage

– Handshake Stage

Control Transfers: Setup Stage
● The Setup Stage consists of three packets.

– The setup token contains the address and endpoint number.

– The data packet has a PID type of data0 and includes details the
type of request

– An handshake used for acknowledging successful receipt or to
indicate an error.

● If the functon successfully receives the setup data it
responds with ACK,

● otherwise it ignores the data and doesn’t send a
handshake packet.

Control Transfer: Data Stage
● The optonal Data Stage consists of one or multple IN or

OUT transfers.

● IN: the host is ready to receive control data.
– If the functon receives the IN token with an error, it ignores the packet.

– Otherwise it can either reply:
● with a DATA packet containing the control data

● a STALL packet indicatng the endpoint has had a error

● or a NAK packet indicatng that temporarily has no data to send.

● OUT the host want to send data to the functon:
– OUT token followed by a data packet with control data as the payload.

– If the OUT token or data packet is corrupt the functon ignores the packet.

– If the functon's endpoint bufer was empty and it stored the data into the
endpoint bufer it issues an ACK.

– If the endpoint bufer is not empty, then the functon returns a NAK.

– However if the endpoint had a error it returns a STALL.

● Data are sent in multple transfers, each being the
maximum packet length except for the last packet

Control Transfer: Status Stage
● Status Stage reports the status of the overall

request and this varies due to directon of transfer.

● Status reportng is always performed by the
functon.

● IN:
– The host acknowledges the successful recept sending an OUT

token followed by a zero length data packet.

– The functon can now report its status:

– An ACK indicates it is ready to accept another command.

– If an error occurred then the functon will issue a STALL.

– However if the functon is stll processing, it returns a NAK.

● OUT:
– the functon will acknowledge the successful receipt of data by

sending a zero length packet in response to an IN token.

– If an error occurred, it should issue a STALL

– If it is stll busy processing data, it should issue a NAK

Control Tranfer: An Example
● The frst USB transacton to ask the Device

Descriptor Request

– The USB device decodes the 8 bytes received, and determines it was a device descriptor
request.

– The device will then atempt to send the Device Descriptor, which will be the next USB
transacton

Returning the Device Descripton Request
● The IN token tells the device it

can send data for th endpoint.

● 12 bytes data are split in 2
chunks of 8 bytes

● The host acknowledges every
data packet.

● A status transacton follows.

● If the transactons were
successful, the host will send a
zero length packet.

● The functon then replies
indicatng its status.

Interrupt Transfer
● Under USB if a device requires the atenton of the

host, it must wait untl the host polls it before it can
report that it needs urgent atenton!

● An Interrupt request is queued by small device untl
the host polls the USB device asking for data.
– Guaranteed Latency

– Stream Pipe - Unidirectonal

– Error detecton and next period retry.

● Maximum Payload size:
– For low-speed devices is 8 bytes.

– For full-speed devices is 64 bytes.

– For high-speed devices is 1024 bytes.

 Interrupt Transactons (IN)
● The host will periodically poll the

interrupt endpoint by sending an IN
Token.

● This rate of polling is specifed in the
endpoint descriptor.

● The functon can:
– ignores the packet and wait for new tokens if IN

is corrupted.

– Returns a data packet if it needs atenton

– NACK if it does not need atenton

– STALL in case of error.

● The host will return
– an ACK if everything is ok.

– no status if data is corrupted.

Interrupt OUT Transactons
● The host issues an OUT

token followed by a data
packet containing the
interrupt data.

● The functon:
– ignores the packet in case of

error

– ACK if the endpoint bufer is
empty and data is stored

– NACK if the endpoint bufer is
not empty

– STALL if an error occurred.

Isochronous Transfers
● Isochronous transfers occur contnuously and periodically.

● They typically contain tme informaton such as an audio or video stream.
– A delay or retry of data in an audio stream cause audio glitches. The beat may no longer be in sync.

– However it is less likely to be notced by the listener the loss of a packet.

● Isochronous Transfers provide
– Guaranteed access to USB bandwidth.

– Bounded latency.

– Stream Pipe – Unidirectonal

– Error detecton via CRC, but no retry or guarantee of delivery.

– Full & high speed modes only.

– No data toggling.

● The maximum size data payload is specifed in the endpoint descriptor of an
Isochronous Endpoint.
– Maximum of 1023 bytes for a full speed device and 1024 bytes for a high speed device.

– It is wise to specify a conservatve payload size.

– If you are using a large payload, it may also be to your advantage to specify a series of alternatve interfaces with
varying isochronous payload sizes.

– The host cannot enable your preferred isochronous endpoint due to bandwidth restrictons, or to fall back on
rather than just failing completely.

● Transactons do not have a handshaking stage.

Bulk Transfers
● Can be used for large bursty data (Printers, Scanners, Mass Storages)

● Bulk transfers will use spare un-allocated bandwidth on the bus.
– Used to transfer large bursty data.

– Error detecton via CRC, with guarantee of delivery.

– No guarantee of bandwidth or minimum latency.

– Stream Pipe – Unidirectonal

– Full & high speed modes only.

● Bulk transfers are only supported by full and high speed devices.

● IN:
– When the host is ready to receive bulk data it issues an IN Token.

– The functon receives the IN token with an error, it ignores the packet

– If the token was received correctly, the functon can either reply with a DATA packet

– A STALL packet indicatng the endpoint has had a error

– NAK packet indicatng to the host that the endpoint is working, but temporary has no data to send.

● OUT:
– An OUT token followed by a data packet containing the bulk data.

– If the OUT token or data packet is corrupt then the functon ignores the packet.

– If the functon's endpoint bufer was empty and it has clocked the data into the endpoint bufer it issues an ACK

– If the endpoint bufer is not empty the functon returns an NAK.

– If the endpoint has had an error it returns a STALL.

Bandwidth Management
● The host is responsible for managing the bandwidth of

the bus.

● This is done at enumeraton when confguring
Isochronous and Interrupt Endpoints and throughout
the operaton of the bus.

● The specifcaton places limits on the bus:
– No more than 90% of any frame to be allocated for periodic transfers

(Interrupt and Isochronous) on a full speed bus.

– No more than 80% on high speed buses for periodic transfers.

● The remaining 10% is lef for control transfers

● once those have been allocated, bulk transfers will get
their slice of what is lef.

Device Descriptor

Confguraton Descriptor
The configuration descriptor specifies:

● how the device is powered,

● what the maximum power consumption is,

● the number of interfaces it has.

Confguraton Descriptor

USB 3.0 - 3.1
● USB 3.0

– il bus "SuperSpeed", a 4,8 Gbit/s, (corrispondent a 600
MB/s, fno a dieci volte più veloce della versione USB 2.0)

● USB 3.1
– 10Gbp/s, rispeto ai 480Mbp/s della tecnologia USB 2.0.

– supporta vari profli energetci, tra cui uno a 12V, 20V a 5A
(60W, 100W)

– Permete di ricaricare /alimentare pratcamente la maggior
parte dei dispositvi eletronici, non solo quelli mobili

– Double faces

Endpoint Descriptor

Alternatve confguratons

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

