ARM

The ARM Architecture




® |ntroduction to ARM Ltd

Programmers Model
Instruction Set
System Design

Development Tools

39v10 The ARM Architecture 2



ARM Ltd

® Founded in November 1990
" Spun out of Acorn Computers

® Designs the ARM range of RISC processor
cores

" Licenses ARM core designs to semiconductor _
partners who fabricate and sell to their
customers.

®  ARM does not fabricate silicon itself

" Also develop technologies to assist with the
design-in of the ARM architecture
= Software tools, boards, debug hardware,
application software, bus architectures,
peripherals etc

39v10 The ARM Architecture 3



ARM Partnership Model

Winrnrv@ BARCO SOTA  [FZ) LZASHLING CoWare

SILEX
DNP 7 igfinte Techoiosy  SIEMENS NSW — ’ virk: uiﬁfﬁ'im iNnnOovEDA. Computex

}mf'ﬁ'tﬁ “ y :
rfech 0y M8 COMIT® YOGITECH
STEPVIND & Do ooswe ADS  Tektronix 2 WindRwver Sophia

: ) - systems
f;"[‘ill}‘*} % 6 deamr  MRLALIA 1;’; m ,/ .
e e i, "’"“‘t rAY
w SEDDU INCHIF \:':-H 7 A TOPPAN Quasmmwn ZTEIC  GoooricH i3l = i e EV Ap‘jr
‘” VIFRQ S & Avpae M iy emesson 2 R mimree ;-5:_ : Aliant
+“' ‘v f I /'“.' ‘: - )
n. S 18 DEK1I .{jl’i‘. ADNMtek NELC '" e
HOYA -"?3- o B Ty A —-QM-"Buz @5 teomsec TOSHIBA dntersil ™ Ami M1 S‘fﬂI]FS‘;IS
SCIWOIX ™ #MCRONAS PHILIPS D 52%%  Lpae  ° ]KOS‘
~—~ ELQET",% ety EPSON 4 Mumomm e 7 Chartered 40P
parthus ' oo poNics SANYO  mimim 44 DRSS Laurersach ,; !
S"j"n 0 PSYS Semicanductar o AKM
= %.I':—::-': LG b'-T_f- hmrl:tm“sm
FIRMWARE SYSTEMS @) -2 % el Panasonic 30 nterniche  Microsoft
_ Y ﬁ qgere S intel technologies, inc.
({‘ — AYUNDA| e SHARP EMBLAZE © /), (-
vMAnL W @ T=35 Virata SONY MR o Mk
: *:@ STy I #T“S'Cmd- (AOTER, Packet . INTERTRUST
GO ? _::,,J I"'Eu'\nl._H_Hl:_‘;;_ |_|1I! fean %HHHHE TEE METATRULT STRLaTY -
ArrayCommm s e = e ERICSSON =

rrrhprs et Addham

5, ¢ OBiwetooth”  symbian
o Symbian (=62 f-r,' éﬂ.

""" 5 mmetrlcnm Cps
EINGTEAM | o Doty .k,@f B Sy JAVA

enuxwores  (CMEXT oAyl pHEMICAL INDUSTRY 60,410

39v10 The ARM Architecture 4

HICHD
& siliconWave RESONEXT N eau 1 Corporation
liquid audio



N
whd
&)
-
-
@)
W
o
e
Q
W
D
S
o
o
—
14
<

39v10 The ARM Architecture




Why ARM?

One of the most licensed and thus widespread processor cores in the
world

Used in PDA, cell phones, multimedia players, handheld game console, digital TV
and cameras

ARMY7: GBA, iPod

ARM9: NDS, PSP, Sony Ericsson, BenQ
ARM11: Apple iPhone, Nokia N93, N800
75% of 32-bit embedded processors

Used especially in portable devices due to its low power consumption
and reasonable performance

39v10 The ARM Architecture 6



Intellectual Property

® ARM provides hard and soft views to licencees
" RTL and synthesis flows
= GDSIll layout

¥ Licencees have the right to use hard or soft views of the IP
" soft views include gate level netlists
" hard views are DSMs

¥ OEMs must use hard views
® to protect ARM IP

39v10 The ARM Architecture 7



Introduction to ARM Ltd

¥ Programmers Model
Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture 8



ARM Data Sizes and Instruction Sets

" The ARM is a 32-bit architecture.

¥ When used in relation to the ARM:
" Byte means 8 bits
" Halfword means 16 bits (two bytes)
" Word means 32 bits (four bytes)

¥ Most ARM’s implement two instruction sets
= 32-bit ARM Instruction Set
" 16-bit Thumb Instruction Set

" Jazelle cores can also execute Java bytecode

39v10 The ARM Architecture 9



Processor Modes

" The ARM has seven basic operating modes:

" User : unprivileged mode under which most tasks run
" FIQ : entered when a high priority (fast) interrupt is raised
" [RQ : entered when a low priority (normal) interrupt is raised

® Supervisor : entered on reset and when a Software Interrupt
instruction is executed

" Abort : used to handle memory access violations
" Undef : used to handle undefined instructions

= System : privileged mode using the same registers as user mode

39v10 The ARM Architecture 10




The ARM Register Set

Current Visible Registers

Abort Mode

Banked out Registers

User FIQ IRQ SVC Undef

rl3 (sp) rl3 (sp) § r13 (sp) § r1l3 (sp)
rld (1lr) rl4 (1lr) § rl4 (lr) § rld (1lr)

39v10 The ARM Architecture 11




ARM Register Organization Summary

r0

rl

r2

r3

rd

r5

r6

r7

r8 r8
r9 r9
rlo rlo Thumb state
rll rll High registers

rl2 rl2

rl3 (sp) rl3 (sp) rl3 (sp) rl3 (sp) rl3 (sp)
rid (1r) rld (1r) rld (1r) rid (1r) rld (1r)
rl5 (pc)

cpsr
spst spst | spsr |

Thumb state
Low registers

Note: System mode uses the User mode register set

39v10 The ARM Architecture 12



The Registers

¥ ARM has 37 registers all of which are 32-bits long.
" 1 dedicated program counter
" 1 dedicated current program status register
® 5 dedicated saved program status registers
® 30 general purpose registers

¥ The current processor mode governs which of several banks is
accessible. Each mode can access
" a particular set of rO-r12 registers
® a particular r13 (the stack pointer, sp) and r14 (the link register, Ir)
" the program counter, r15 (pc)
® the current program status register, cpsr

Privileged modes (except System) can also access
" a particular spsr (saved program status register)

39v10 The ARM Architecture 13




39v10 The ARM Architecture

31 28 27 24 23 16 15

8 7 6 5 4 0

INIZICIVQ JI U n d e fIi

IIIF'T IHIOdleI I

| . | - |

Condition code flags
" N = Negative result from ALU
Z = Zero result from ALU

|
® C = ALU operation Carried out
® V = ALU operation oVerflowed

Sticky Overflow flag - Q flag
® Architecture 5TE/J only
® Indicates if saturation has occurred

J bit
® Architecture STEJ only
® J =1: Processor in Jazelle state

X Cc

Interrupt Disable bits.
® | =1: Disables the IRQ.
® F =1: Disables the FIQ.

T Bit
® Architecture xT only
® T =0: Processor in ARM state
® T =1:Processor in Thumb state

Mode bits
= Specify the processor mode

14




Program Counter (r15)

" When the processor is executing in ARM state:
= All instructions are 32 bits wide
= All instructions must be word aligned

" Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned).

¥ When the processor is executing in Thumb state:
" Allinstructions are 16 bits wide
= Allinstructions must be halfword aligned

" Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned).

" When the processor is executing in Jazelle state:
= All instructions are 8 bits wide
" Processor performs a word access to read 4 instructions at once

39v10 The ARM Architecture 15




Exception Handling

¥ When an exception occurs, the ARM:
® Copies CPSR into SPSR_<mode>
" Sets appropriate CPSR bits
" Change to ARM state

i _ g 0x1C FlQ
| ange_to excepthn mode | 0x18 IRQ
" Disable interrupts (if appropriate)
= Stores the return address in LR_<mode> Ox14 (Resenved)
= Sets PC to vector address 0x10 Data Abort
_ 0x0C Prefetch Abort
" To return, exception handler needs to: 0x08 -
|
Restore CPSR from SPSR_<mode> 0x04 Undefined Instruction
" Restore PC from LR_<mode>
0x00 Reset
This can only be done in ARM state. Vector Table

Vector table can be at

OxFFFFO0000 on ARM720T
and on ARM9/10 family
devices

39v10 The ARM Architecture 16




Development of the

ARM Architecture

Improved Jazell
Halfword ARM/Thum azelle
and signed Interworking Java bytecode

halfword / execution
byte support CLz

System Saturated maths ARMOEJ-S ARM926EJ-S
mode

cccumuiate

sccumulate ARM7EJ-S | | ARM1026EJ-S

instructions
Thumb
instruction
Early ARM | set

architectures
ARM7TDMI ARMOTDMI
Unaligned data
ARM720T ARM940T ARM966E-S support ARM1136EJ-S

ARM1020E SIMD Instructions

QL0

Multi-processing

XScale

V6 Memory
architecture (VMSA)

39v10 The ARM Architecture 17




Naming ARM

ARMxyzTDMIEJFS

X: series

y: MMU

z: cache

T: Thumb

D: debugger

M: Multiplier

|: EmbeddedICE (built-in debugger hardware)
E: Enhanced instruction

J: Jazelle (JVM)

F: Floating-point

S: Synthesizible version (source code version for EDA tools)

39v10 The ARM Architecture 18




Introduction to ARM Ltd

Programmers Model
¥ Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture

19




ARM conditional Execution and Flags

® ARM instructions can be made to execute conditionally by postfixing
them with the appropriate condition code field.

" This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3, %0 CMP r3,#0
BEQ skip ADDNE rO,rl,r2
ADD rOfrl,r2

skip

" By default, data processing instructions do not affect the condition cod
flags but the flags can be optionally set by using “S”. CMP does not

need “S”.
loop «—— decrement r1 and set flags
SUBS rl,rl,:#l if Z flag clear then branch
BNE loop

39v10 The ARM Architecture 20




Condition Codes

" The possible condition codes are listed below:
" Note AL is the default and does not need to be specified

Suffix Description Flags tested
EQ Equal Z=1

NE Not equal Z=0

CS/HS [ Unsigned higher or same C=1

CcC/LO | Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1 & Z=0
LS Unsigned lower or same C=0 or Z=1
GE Greater or equal N=

LT Less than N!=

GT Greater than Z=0 & N=
LE Less than or equal Z=1 or N=IV
AL Always

39v10 The ARM Architecture

Al



Examples of conditional

execution

¥ Use a sequence of several conditional instructions
if (a==0) func(l);

CMP r0,#0
MOVEQ r0O,#1
BLEQ func

" Set the flags, then use various condition codes
if (a==0) x=0;
if (a>0) =x=1;
CMP r0, #0
MOVEQ rl, #0
MOVGT rl,#1

¥ Use conditional compare instructions
if (a==4 || a==10) x=0;
CMP r0, #4
CMPNE r0, #10
MOVEQ rl,#0

22

39v10 The ARM Architecture



Branch instructions

® Branch: B{<cond>} label
®  Branch with Link : BL{<cond>} subroutine label
31 28 27 25 24 23 0
T 1T [ T 1 T T T T T T T T T T T T T T 7T 1T T 17 T T T 011
Cond 1 0 1|L Offset
. L Link bit 0=Branch
1 = Branch with link
Condition field

" The processor core shifts the offset field left by 2 positions, sign-extends
it and adds it to the PC

" + 32 Mbyte range
" How to perform longer branches?

39v10 The ARM Architecture 23




Data processing Instructions

® Consist of :

= Arithmetic: ADD ADC SUB SBC RSB RSC
" Logical: AND ORR EOR BIC

= Comparisons: CMP CMN TST TEQ

|

Data movement: MOV MVN
" These instructions only work on registers, NOT memory.
¥  Syntax:

<Operation>{<cond>} {S} Rd, Rn, Operand2

" Comparisons set flags only - they do not specify Rd
= Data movement does not specify Rn

® Second operand is sent to the ALU via barrel shifter.

39v10 The ARM Architecture 24




The Barrel Shifter

LSL : Logical Left Shift ASR: Arithmetic Right Shift
‘ 1
CF |+ Destination [*— 0 » |[Destination -+ CF
Multiplication by a power of 2 Division by a power of 2,

preserving the sign bit

LSR : Logical Shift Right ROR: Rotate Right
.0 —> Destination > CF —*| Destination > CF
Division by a power of 2 Bit rotate with wrap around

from LSB to MSB

RRX: Rotate Right Extended

—| Destination - CF

Single bit rotate with wrap around
from CF to MSB

39v10 The ARM Architecture

25



Using the Barrel Shifter:

The Second Operand

Operand Operand «—— Register, optionally with shift operation

1 2 = Shift value can be either be:
" 5 bit unsigned integer
J " Specified in bottom byte of another
reqister.
" Used for multiplication by constant
Shifter

Immediate value
" 8 bit number, with a range of 0-255.
" Rotated right through even number of
positions
" Allows increased range of 32-bit
l constants to be loaded directly into

v

registers

Result

39v10 The ARM Architecture 26




Immediate constants (1)

¥ No ARM instruction can contain a 32 bit immediate constant
"= All ARM instructions are fixed as 32 bits long

" The data processing instruction format has 12 bits available for operand2

11 87 0
| IF0t| | |im|mled|_i|3 | Quick Quiz:
x2 —— 0xe3a004££9
ROR MOV r0O, #72°?2*

¥ 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

¥ Rule to remember is “8-bits shifted by an even number of bit positions”.

39v10 The ARM Architecture 27




Immediate constants (2)

ror #0 | [o]o[o[o]o[o[0]o[o[0]0[0[0]o[0[0]0[0]0]0[0]o]o]o [N [ range 0-0x000000f step 0x00000001

ror#8 | [N o]o]o]0[o]o[0[0]o[0[0]o[0[0]o[0[0]0[0[0]0]0]0]0] [ range 0-0xif000000 step 0x01000000

ror #30| [o|ojo[o|o|ojo|o]o|0|0|0|0|0[0|0[0|0|0|0]|0O o_o 0| | range 0-0x000003fc step 0x00000004

® The assembler converts immediate values to the rotate form:
" MOV r0,#4096 ; uses 0x40 ror 26
" ADD rl,r2,#0xFF0000 ; uses OxXFF ror 16

"  The bitwise complements can also be formed using MVN:
® MOV r0, #OXFFFFFFFF ; assembles to MVN rO, #0

¥ Values that cannot be generated in this way will cause an error.

39v10 The ARM Architecture 28




Loading 32 bit constants

" To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:

® IDR rd, =const

" This will either:
" Produce a MOV or MVN instruction to generate the value (if possible).

or

" Generate a LDR instruction with a PC-relative address to read the constant
from a literal pool (Constant data area embedded in the code).

"  For example
® LDR r0,=0xFF => MOV rO, #0xFF
® ILDR r0,=0x55555555 => ILDR r0O, [PC,#Imml2]

" This is the recommended way of loading constants into a register

39v10 The ARM Architecture 29




Multiply

¥  Syntax:
" MUL{<cond>}{S} Rd, Rm, Rs Rd=Rm *Rs
" MLA{<cond>}{S} Rd,Rm,Rs,Rn Rd = (Rm * Rs) + Rn
" [U|SIMULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
" [U|SIMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

" Cycle time
" Basic MUL instruction
= 2-5 cycles on ARM7TDMI
" 1-3 cycles on StrongARM/XScale
= 2 cycles on ARM9E/ARM102xE
" +1 cycle for ARMO9TDMI (over ARM7TDMI)
" +1 cycle for accumulate (not on 9E though result delay is one cycle longer)
" +1 cycle for “long”

% Above are “general rules” - refer to the TRM for the core you are using for
the exact details

39v10 The ARM Architecture

30



Single register data transfer

LDR STR Word

LDRB STRB  Byte

LDRH STRH  Halfword

LDRSB Signed byte load
LDRSH Signed halfword load

¥ Memory system must support all access sizes

®  Syntax:
" LDR{<cond>}{<size>} Rd, <address>
" STR{<cond>}<size>} Rd, <address>

e.g. LDREQB

39v10 The ARM Architecture 31




Address accessed

® Address accessed by LDR/STR is specified by a base register plus an
offset

® For word and unsigned byte accesses, offset can be

® An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
LDR rO0, [rl, #8]

= A register, optionally shifted by an immediate value
IDR r0O,[rl,r2]
LDR r0,[rl,r2,LSL#2]

" This can be either added or subtracted from the base register:
LDR r0, [rl, #-8]
IDR 0, [rl,-r2]
ILDR r0,[rl,-r2,LSL#2]

"  For halfword and signed halfword / byte, offset can be:
" An unsigned 8 bit immediate value (ie 0-255 bytes).
" A register (unshifted).

® Choice of pre-indexed or post-indexed addressing

39v10 The ARM Architecture 32




ARM Pre or Post Indexed Addressing?

Offset Source

r0
for STR
r1 T
Base
Register m - > 0x200

Auto-update form: STR rO, [rl,#12]"! |

®  Pre-indexed: STR r0, [rl,#12] |

® Post-indexed: STR r0, [rl], #12 |

Updated I Offset
Base | 0o | «——
ource
Original r1 I /m I?egiss_l’EeRr
| > 0x200 or

Base
Register m

KK]

39v10 The ARM Architecture




LDM / STM operation

" Syntax:
<LDM | STM>{<cond>}<addressing_mode> Rb{!}, <register list>

¥ 4 addressing modes:

LDMIA / STMIA increment after
LDMIB / STMIB increment before
LDMDA / STMDA decrement after
LDMDB / STMDB decrement before
IA

IDMxx rl0, {rO,rl,r4}
STMxx rl0, {rO,rl,r4d}

Increasing
Address

Base Register (Rb)

39v10 The ARM Architecture



Software Interrupt (SWI)

31 28 27 24 23 0
L 1T -ttt ttr 1ttt 11111t 17 17 [ 17 171717
Cond |1 11 1 SWI number (ignored by processor)

Condition Field

® Causes an exception trap to the SWI hardware vector

¥ The SWI handler can examine the SWI number to decide what operation
has been requested.

% By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can
request.

%  Syntax:
# SWI{<cond>} <SWI number>

39v10 The ARM Architecture 35




PSR Transfer Instructions

31 28 27 24 23 16 15 8 7 6 5 4 0
INIZICIVQ JI U n d e fIi n e d IIIFT Irqod.eI I
| . | - | x | - |

® MRS and MSR allow contents of CPSR / SPSR to be transferred to / from
a general purpose register.

¥ Syntax:
® MRS{<cond>} Rd,<psr> ; Rd = <psr>
® MSR{<cond>} <psr[_ fields]>,Rm ; <psr[ fields]> = Rm

where
" <psr> = CPSR or SPSR
“ [_fields] = any combination of ‘fsxc’

¥  Also an immediate form
® MSR{<cond>} <psr fields>,#Immediate

" In User Mode, all bits can be read but only the condition flags (_f) can be
written.

39v10 The ARM Architecture 36




ARM ARM Branches and Subroutines

" B <label>
" PC relative. £32 Mbyte range.

¥  BL <subroutine>
= Stores return address in LR
" Returning implemented by restoring the PC from LR
" For non-leaf functions, LR will have to be stacked

funcl func2

STMFD sp!,
{regs,1r}

BL funcl BL func2

LDMFD sp!,
{regs,pc}

39v10 The ARM Architecture



ARM

Thumb

® Thumb is a 16-bit instruction set
" Optimised for code density from C code (~65% of ARM code size)
" Improved performance from narrow memory
" Subset of the functionality of the ARM instruction set

® Core has additional execution state - Thumb
= Switch between ARM and Thumb using BX instruction

ADDS r2,r2,#1

32-bit ARM Instruction

> 4

16-bit Thumb Instruction

39v10 The ARM Architecture

For most instructions generated by compiler:

Conditional execution is not used

Source and destination registers identical
Only Low registers used

Constants are of limited size

Inline barrel shifter not used



Introduction

Programmers Model
Instruction Sets
® System Design

Development Tools

39v10 The ARM Architecture

39




ARM

16 bit RAM

Example ARM-based System

Interrupt

Controller

8 bit ROM

39v10 The ARM Architecture

Peripherals

1/O

40



ARM

TIC
External Bus Interface
ROM External
Bus
Interface

External

RAM Interrupt
Controller

; AHB or ASB Ao APB R
System Bus Peripheral Bus
" AMBA " ACT
® Advanced Microcontroller Bus = AMBA Compliance Testbench
Architecture
- :
" ADK PrimeCell

| ’ . .
= Complete AMBA Design Kit ARM’s AMBA compliant peripherals

39v10 The ARM Architecture 41




VYon Neumann

Topologies

Harvard

ARM7s
and olders

AHB
bus

ARMB9s
and newers

Inst. Data

L

MEMORY
& 1/0

I D
Cache Cache

P

Memory-mapped |/O:
* No specific instructions for I/O
(use Load/Store instr. instead)
* Peripheral’s registers at some
memory addresses

39v10 The ARM Architecture

Bus Interface

AHB
bus

MEMORY
& 1/0

42



39v10 The ARM Architecture

ALU bus

Address Register

1

{

PC bus

v

PC

REGISTER
BANK

A bus

——

<P Multiplier

<=

B bus

]

INSTRUCCTION
DECODER

T

Write Data Reg.

Read Data Reg.

v

1

Instruction Reg.

A

Control Lines

Thumb to
ARM
translator

1




ARM Pipelining examples

ARMT7TDMI Pipeline
FETCH DECODE EXECUTE
Reg. i _ i i Reg.
Read 1Shift 1 ALU iyt
- |
1 Clock cycle
ARMYTDMI Pipeline
FETCH DECODE EXECUTE MEMORY WRITE
' Reg. | oy | Reg. |
i mooe | shif { AL access Wrie |
- |
1 Clock cycle
° : Read Op-code from memory to internal Instruction Register
° . Activate the appropriate control lines depending on Opcode
° : Do the actual processing

39v10 The ARM Architecture 44




ARM7TDMI Pipelining (1)

1 FETCH DECODE |EXECUTE
2 FETCH DECODE |EXECUTE
3 FETCH DECODE |EXECUTE

instruction

- (ime

* Simple instructions (like ADD) Complete at a rate of one per cycle

39v10 The ARM Architecture 45




ARM

ARM7TDMI Pipelining (Il)

* More complex instructions:

1 ADD

2 STR

3 ADD

4 ADD

5 ADD

instruction

FETCH DECODE |EXECUTE
FETCH DECODE |Cal. ADDR |Data Xfer.
FETCH ::s:t-:':l][:: DECODE |EXECUTE
FETCH ::s:t:r%[:: DECODE |EXECUTE
FETCH DECODE |EXECUTE
B time

STR : 2 effective clock cycles (+1 cycle)

39v10 The ARM Architecture

46




ARM

ARM7 0 Fetch H)DecodeH)Execute]

ARM9

Pipeline

0 Fetch )—-ODecmde)—-OExecute)—-O Memmr}f)—-o Write )

In execuLlUI Iy .J\I ulvvu,a v IJ’ oY diIiTvauawu

0x8004 NOP

Time l 0x8000 LDR pc, [pc,#0]

0x8008 DCD jumpAddress

|

Fetch

oo )

Y
Decode

o )

39v10 The ARM Architecture

Y
Execute

on )

pc + 8
(0x8000 + 8)

47



Cortex-AS8

" . ARMv7-A Architecture
Cortex '-A8 Thumb-2
Thumb-2EE (Jazelle-RCT)
TrustZone extensions
Custom or synthesized design
MMU
64-bit or 128-bit AXI Interface
L1 caches
it hets A 16 or 32KB each
Unified L2 cache
| imagund 13 Coce ' 0-2MB in size
Gt 8-way set-associative

" Optional features
" VFPv3 Vector Floating-Point
" NEON media processing engine

Dual-issue, super-scalar 13-stage pipeline
" Branch Prediction & Return Stack
" NEON and VFP implemented at end of pipeline

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



Cortex-A9

ARMv7-A Architecture ( Cortex™-A9 MPCore
Thumb-2, Thumb-2EE
TrustZone support

Variable-length Multi-issue

pipeline
Register renaming
Speculative data prefetching
Branch Prediction & Return

Stack

64-bit AXI instruction and data

interfaces _ " Optional features:

TrustZone extensions " PTM instruction trace interface

L1 Data and Instruction caches " |EM power saving support
16-64KB each " Full Jazelle DBX support
4-way set-associative a

VFPv3-D16 Floating-Point Unit (FPU) or
NEON™ media processing engine

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



Cortex-A15 MPCore

~

1-4 processors per cluster f CortexAlE MPCore
Fixed size L1 caches (32KB)
Integrated L2 Cache
512KB - 4MB
System-wide coherency
support with AMBA 4 ACE Iﬁ Lt Caches m L1 Cacres
Backward-compatible with o0 Contral Untt (SCU) and 12 Cache
AXI3 interconnect - ...
Integrated Interrupt Controller o |
0-224 external interrupts for | 128-bic AMBA 4 - Advanced Coherent Bus Interface | |

entire cluster
CoreSight debug
Advanced Power Management

" Large Physical Address Extensions (LPAE) to ARMv7-A Architecture
Virtualization Extensions to ARMv7-A Architecture

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



Development of the ARM Architecture

v4 VO Vo v/

Halfword and Improved SIMD Instructions Thumb-2
signed halfword } interworking i Multi-processing
/ byte support : CLzZ : v6 Memory _ _

: : . : : : Arch Profil

i Saturated arithmetic  { architecture rchitecture .ro '_ s
Systemmode  : DSP MAC : Unaligned data support 7-A - Applications

. instructions : 7-R -Real-time
Thumb Extensions: 7-M - Microcontroller
instruction set : Extensions: i Thumb-2 (6T2)

(v4T) Jazelle (5TEJ) ! TrustZone® (62)
£ Multicore (6K)
Thumb only (6-M)

" Note that implementations of the same architecture can be different
" Cortex-A8 - architecture v7-A, with a 13-stage pipeline
" Cortex-A9 - architecture v7-A, with an 8-stage pipeline

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



Architecture ARMv7 profiles

Application profile (ARMv7-A)
Memory management support (MMU)
Highest performance at low power
Influenced by multi-tasking OS system requirements
TrustZone and Jazelle-RCT for a safe, extensible system
e.g. Cortex-A5, Cortex-A9

Real-time profile (ARMv7-R)
Protected memory (MPU)
Low latency and predictability ‘real-time’ needs
Evolutionary path for traditional embedded business

e.g. Cortex-R4

Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)

Lowest gate count entry point

Deterministic and predictable behavior a key priority
Deeply embedded use

e.g. Cortex-M3

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



Which architecture is my processor?

Classic Application Embedded
ARM Processors (Cortex Processors Cortex Processors

| Cortex-A9.

ARM11MP I Cortex-Ag

ARM92¢6 M ARM176)Z I Cortex-AY SC300 SC000
Cortex-M1

Cortex-M0

ARMvIM/ME  ARMv6M

Thumb
NVIC
WIC

SC100 ARM968 M ARM1136| I Cortex-AS

ARM7TDMI ARM946 ARM1156T2 |l Cortex-R4
ARMv4T ARMV5T) ARMv6 ARMv7A/R
ARM 32-Bit ISA

Thumb 16-Bit [SA

Thumb-2 Mixed ISA

VFPy2 VFPy3
Jazelle

TrustZone

Jazelle

TrustZone

SIMD

SIMD

NEON

Virtualization

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Cortex-A8
	Cortex-A9
	Cortex-A15 MPCore
	Development of the ARM Architecture
	Architecture ARMv7 profiles
	Which architecture is my processor?

