
Salvatore Venticinque

Hyper-Threading Technology
Architecture and Micro-

Architecture

Originally Prepared by Tahir Celebi

Istanbul, 2005

Outline

 Introducton
 Traditonal Approaches
 Hyper-Threading Overview
 Hyper-Threading Implementaton

• Front-End Executon

• Out-of-Order Executon

 Performance Results
 OS Supports
 Conclusion

PII, PIII

Sia il Pentium II che il Pentium III si caratterizzano per:

 modifiche in termini di memorie di maggiori dimensioni

 per gli algoritmi di esecuzione dinamica che consentono al processore:

– di eseguire le istruzioni delle applicazioni in modo molto più
efficiente,

– conservando allo stesso tempo la compatibilità software.

Introducton

 Hyper-Threading technology makes a single
processor appear as two logical processors.

 It was frst implemented in the Prestonia
version of the Pentum® 4 Xeon processor on
02/25/02.

Traditonal Approaches (I)

 High requirements of Internet and
Telecommunicatons Industries

 Results are unsatsfactory compared the gain they
provide with the cost they cause

 Well-known techniques;
• Super Pipelining

• Branch Predicton

• Super-scalar Executon

• Out-of-order Executon

• Fast memories (Caches)

Traditonal Approaches (II)

 Super Pipelining:
• Have fner granularites, execute far more instructons within a second

(Higher clock frequencies)

• Hard to handle cache misses, interrupts and branch mispredictons
 Instructon Level Parallelism (ILP)

• Mainly targets to increase the number of instructons within a cycle

• Super Scalar Processors with multple parallel executon units

• Executon needs to be verifed for out-of-order executon
 Fast Memory (Caches)

• To reduce the memory latencies, hierarchical units are using which are
not an exact soluton

Traditonal Approaches (III)

Same silicon technology

Normalized speed-ups
with Intel486™

Thread-Level Parallelism

 Chip Mult-Processing (CMP)
• Put 2 processors on a single die

• Processors (only) may share on-chip cache

• Cost is stll high

• IBM Power4 PowerPC chip

 Single Processor Mult-Threading;
• Time-sliced mult-threading

• Switch-on-event mult-threading

• Simultaneous mult-threading

Hyper-Threading (HT) Technology

 Provides more satsfactory soluton
 Single physical processor is shared as two logical processors
 Each logical processor has its own architecture state
 Single set of executon units are shared between logical processors
 N-logical PUs are supported
 Have the same gain % with only 5% die-size penalty.
 HT allows single processor to fetch and execute two separate code

streams simultaneously.

HT Resource Types

 Replicated Resources
• Flags, Registers, Time-Stamp Counter, APIC

 Shared Resources
• Memory, Range Registers, Data Bus

 Shared | Parttoned Resources
• Caches & Queues

PIV Architecture

Il cuore dell’architettura Netburst:

 Hyperpipeline (20 stadi)

 Rapid Execution Engine (REE)

 Execution Trace Cache

 Advanced Dynamic Execution.

 Quad Pumped Bus

HT Pipeline (I)

BUS QUAD PUMPED:

Due segnali di clock sfasati tra lo di 180 gradi

 frequenza doppia rispetto al bus per trasportare 4

dati ad ogni ciclo

 bus a 64 bit, frequenza 100 MHz, banda 3.2 GB/s

contro l'1GB/s del Pentium III con bus a 133MHz.

RAPID EXECUTION ENGINE:

 3 ALU, 2 AGU (Address Generation Unit), e una FPU

(Floating Point Unit). Due delle tre ALU peri istruzioni

semplici (AND, OR, ADD), eseguite in mezzo ciclo di clock

(Double Pumped). La terza ALU è per istruzioni complesse

alla frequenza della CPU.

HT Pipeline (II)

HT Pipeline (III)

Executon Trace Cache (TC) (I)

 Stores decoded instructons called “micro-operatons”
or “uops”

 Arbitrate access to the TC using two IPs
• If both PUs ask for access then switch will occur in the next

cycle.

• Otherwise, access will be taken by the available PU

• Stalls (stem from misses) lead to switch
 Entries are tagged with the owner thread info
 8-way set associatve, Least Recently Used (LRU)

algorithm
 Unbalanced usage between processors

Executon Trace Cache (TC) (I)

Microcode Store ROM (MSROM) (I)

 Complex instructons (e.g. IA-32) are decoded
into more than 4 uops

 Invoked by Trace Cache
 Shared by the logical processors
 Independent fow for each processor
 Access to MSROM alternates between logical

processors as in the TC

Microcode Store ROM (MSROM) (II)

ITLB and Branch Predicton (I)

 If there is a TC miss, bytes need to be loaded from L2 cache and
decoded into TC

 ITLB gets the “instructon deliver” request
 ITLB translates next Pointer address to the physical address
 ITLBs are duplicated for processors
 L2 cache arbitrates on frst-come frst-served basis while always

reserve at least one slot for each processor
 Branch predicton structures are either duplicated or shared

• If shared owner tags should be included

ITLB and Branch Predicton (II)

Uop Queue

HT Pipeline (III) -- Revisited

Allocator

 Allocates many of the key machine bufers;

• 126 re-order bufer entries

• 128 integer and foatng-point registers

• 48 load, 24 store bufer entries
 Resources shared equal between processors
 Limitaton of the key resource usage, we enforce fairness and

prevent deadlocks over the Arch.
 For every clock cycle, allocator switches between uop queues
 If there is stall or HALT, there is no need to alternate between

processors

Register Rename

 Involves with mapping shared registers names
for each processor

 Each processor has its own Register Alias Table
(RAT)

 Uops are stored in two diferent queues;
• Memory Instructon Queue (Load/Store)

• General Instructon Queue (Rest)

 Queues are parttoned among PUs

Instructon Scheduling

 Schedulers are at the heart of the out-of-order
executon engine

 There are fve schedulers which have queues of size 8-
12

 Scheduler is oblivious when getng and dispatching
uops
• It ignores the owner of the uops

• It only considers if input is ready or not

• It can get uops from diferent PUs at the same tme

• To provide fairness and prevent deadlock, some entries are
always assigned to specifc PUs

Executon Units & Retrement

 Executon Units are oblivious when getng and executng
uops
• Since resource and destnaton registers were renamed earlier,

during/afer the executon it is enough to access physical registries
 Afer executon, the uops are placed in the re-order

bufer which decouples the executon stage from
retrement stage

 The re-order bufer is parttoned between PUs
 Uop retrement commits the architecture state in

program order
• Once stores have retred, the store data needs to be writen into L1

data-cache, immediately

Memory Subsystem

 Totally oblivious to logical processors
• Schedulers can send load or store uops without regard to PUs and

memory subsystem handles them as they come

 Memory types;
• DTLB:

• Translates addresses to physical addresses

• 64 fully associatve entries; each entry can map either 4K or 4MB page

• Shared between PUs (Tagged with ID)

• L1, L2 and L3 caches
• Cache confict might degrade performance

• Using same data might increase performance (more mem. hits)

System Modes

 Two modes of operaton;

• single-task (ST)

• When there is one SW thread to execute

• mult-task (MT)

• When there are more than one SW threads to execute

• ST0 or ST1 where number shows the actve PU

• HALT command was introduced where resources are combined
afer the call

• Reason is to have beter utlizaton of resources

Performance

OS Support for HT

 Natve HT Support
• Windows XP Pro Editon

• Windows XP Home Editon

• Linux v 2.4.x (and higher)

 Compatble with HT
• Windows 2000 (all versions)

• Windows NT 4.0 (limited driver support)

 No HT Support
• Windows ME

• Windows 98 (and previous versions)

Conclusion

 Measured performance (Xeon) showed
performance gains of up to 30% on
common server applications.

 HT is expected to be viable and market
standard from Mobile to server
processes.

Questons ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

