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Sia il Pentium Il che il Pentium Ill si caratterizzano per:
« modifiche in termini di memorie di maggiori dimensioni

« per gli algoritmi di esecuzione dinamica che consentono al processore:

- di eseqguire le istruzioni delle applicazioni in modo molto piu
efficiente,

— conservando allo stesso tempo la compatibilita software.



Introduction

Hyper-Threading technology makes a single
processor appear as two logical processors.

It was first implemented in the Prestonia
version of the Pentium® 4 Xeon processor on

02/25/02.



Traditional Approaches (I)

High requirements of Internet and
Telecommunications Industries

Results are unsatisfactory compared the gain they
provide with the cost they cause

Well-known techniques;
Super Pipelining
Branch Prediction
Super-scalar Execution
Out-of-order Execution
Fast memories (Caches)



Traditional Approaches (Il)

Super Pipelining:

Have finer granularities, execute far more instructions within a second
(Higher clock frequencies)

Hard to handle cache misses, interrupts and branch mispredictions

Instruction Level Parallelism (ILP)
Mainly targets to increase the number of instructions within a cycle
Super Scalar Processors with multiple parallel execution units
Execution needs to be verified for out-of-order execution

Fast Memory (Caches)

To reduce the memory latencies, hierarchical units are using which are
not an exact solution



Traditional Approaches (l11)
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Figure 1: Single-stream performance vs. cosl



Thread-Level Parallelism

Chip Multi-Processing (CMP)

Put 2 processors on a single die
Processors (only) may share on-chip cache
Cost is still high

IBM Power4 PowerPC chip

Single Processor Multi-Threading;
Time-sliced multi-threading
Switch-on-event multi-threading
Simultaneous multi-threading



Hyper-Threading (HT) Technology

Provides more satisfactory solution

Single physical processor is shared as two lo7

Each logical processor has its own architectt
Single set of execution units are shared betv
N-logical PUs are supported

Have the same gain % with only 5% die-size

HT allows single processor to fetch and exe
streams simultaneously.
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gure 2: Processors without Hyper-Threading Tech
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HT Resource Types

Replicated Resources
Flags, Registers, Time-Stamp Counter, APIC

Shared Resources
Memory, Range Registers, Data Bus

Shared | Partitioned Resources
Caches & Queues



PIV Architecture
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HT Pipeline (I)
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HT Pipeline (Il)
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HT Pipeline (lII)
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Figure 6: Out-of-order execution engine detailed pipeline



Execution Trace Cache (TC) (I)

)

Stores decoded instructions called “micro-operations’
or “uops”
Arbitrate access to the TC using two IPs

If both PUs ask for access then switch will occur in the next
cycle.
Otherwise, access will be taken by the available PU

Stalls (stem from misses) lead to switch
Entries are tagged with the owner thread info

8-way set associative, Least Recently Used (LRU)
algorithm

Unbalanced usage between processors



Execution Trace Cache (TC) (I)

If both logical processors must access the TC simultancously,
access is permitted in altemnating clock cyeles. If one
logical processor stalls or is unable o use the TC, the other

logical processor can access the trace cache in wn}'crle--)

Trace Cache
CSp (12K pops, B-way)
Logical Processor 0 |
nslruction Prefetcher




Microcode Store ROM (MSROM) (I)

Complex instructions (e.g. IA-32) are decoded
into more than 4 uops

Invoked by Trace Cache
Shared by the logical processors
Independent flow for each processor

Access to MSROM alternates between logical
processors as in the TC



Microcode Store ROM (MSROM) (II)

- Microcode ROM decodes any instruction that decodes
into more than 4 pops and also handles Fault and
mterrupt handling.
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ITLB and Branch Prediction (I)

If there is a TC miss, bytes need to be loaded from L2 cache and
decoded into TC

ITLB gets the “instruction deliver” request
ITLB translates next Pointer address to the physical address
ITLBs are duplicated for processors

L2 cache arbitrates on first-come first-served basis while always
reserve at least one slot for each processor

Branch prediction structures are either duplicated or shared
If shared owner tags should be included



ITLB and Branch Prediction (Il)

- Assuming the requested code & i the L2, the
32-bvte block of code i boaded o one of the
two 64-byte Streammng Buflers associated with

the requesting logical processor.
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Uop Queue

Trace Cache
(12K pops, B-way)

e

-The TC produces up to 3 pops per clock which
are placed in the pop Queue.

- The queue is partitioned into two subquenes, one for
each logical processor.

= The pops are tagged with the logical processor 1D,

- In the event of a mispredicted branch, only the
instructions for the affected logical processor are
flushed from the pipeline.

to instruction pipeline stages




HT Pipeline (Ill) -- Revisited
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Figure 6: Out-of-order execution engine detailed pipeline



Allocator

Allocates many of the key machine buffers;
126 re-order buffer entries
128 integer and floating-point registers
48 load, 24 store buffer entries
Resources shared equal between processors

Limitation of the key resource usage, we enforce fairness and
prevent deadlocks over the Arch.

For every clock cycle, allocator switches between uop queues

If there is stall or HALT, there is no need to alternate between
processors



Register Rename

Involves with mapping shared registers names
for each processor

Each processor has its own Register Alias Table
(RAT)

Uops are stored in two different queues;

Memory Instruction Queue (Load/Store)
General Instruction Queue (Rest)

Queues are partitioned among PUs



Instruction Scheduling

Schedulers are at the heart of the out-of-order
execution engine

There are five schedulers which have queues of size 8-
12

Scheduler is oblivious when getting and dispatching
uops

It ignores the owner of the uops

It only considers if input is ready or not

It can get uops from different PUs at the same time

To provide fairness and prevent deadlock, some entries are
always assigned to specific PUs



Execution Units & Retirement

Execution Units are oblivious when getting and executing
uops

Since resource and destination registers were renamed earlier,
during/after the execution it is enough to access physical registries

After execution, the uops are placed in the re-order
buffer which decouples the execution stage from
retirement stage

The re-order buffer is partitioned between PUs

Uop retirement commits the architecture state in
program order

Once stores have retired, the store data needs to be written into L1
data-cache, immediately



Memory Subsystem

Totally oblivious to logical processors
Schedulers can send load or store uops without regard to PUs and
memory subsystem handles them as they come

Memory types;

DTLB:
® Translates addresses to physical addresses
® 64 fully associative entries; each entry can map either 4K or 4MB page
® Shared between PUs (Tagged with ID)

L1, L2 and L3 caches

® Cache conflict might degrade performance
® Using same data might increase performance (more mem. hits)



System Modes

Two modes of operation;
single-task (ST)
® When there is one SW thread to execute
multi-task (MT)
® When there are more than one SW threads to execute
® STO or ST1 where number shows the active PU

® HALT command was introduced where resources are combined
after the call

Reason is to have better utilization of resources



Performance
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Figure 8: Performance increases from Hyper-
Threading Technology on an OLTF workload



OS Support for HT

Native HT Support
Windows XP Pro Edition
Windows XP Home Edition
Linux v 2.4.x (and higher)

Compatible with HT
Windows 2000 (all versions)
Windows NT 4.0 (limited driver support)

No HT Support
Windows ME
Windows 98 (and previous versions)



Conclusion

Measured performance (Xeon) showed
performance gains of up to 30% on
common server applications.

HT is expected to be viable and market
standard from Mobile to server
processes.



Questions ?
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