Introducing Embedded Systems and the Microcontrollers

General Purpose System

- Server
- PC
- Desktop
- Laptop
- Smartphone ??
- Raspberry ??

Raspberry examples

CE STATE OF THE PROPERTY OF TH

Quad USB Ports

10/100 BaseT Ethernet Socket

DSI Display Connector

Micro SD Card Slot (on underside)

5V Micro USB HDMI Port

CSI Camera Connector

4-pole 3.5mm jack (stereo audio & composite video)

	5V Power	5V Power	Ground	GPIO14 UARTO_TXD	GPIO15 UARTO_RXD	GPIO18 PCM_CLK	Ground	GP1023	GP1024	Ground	GP1025	GPIO8 SPIO_CEO_N	GPIO7 SPIO_CE1_N	ID_SC I2C ID EEPROM	Ground	GPI012	Ground	GP1016	GPI020	GP1021	
Pi Model B/B+	1 2	3 4	2	2	6	11 12	13 14	15 16	17 18	(19) (20)	21 22	23 24	25 26	27 28	\$ \$ \$	31 32	33 34	35 36	37 38	39 40	Pi Model B+
	3V3 Power	GPI02 SDA1 12C	GPIO3 SCL112C	GPI04	Ground	GP1017	GP1027	GP1022	3V3 Power	GPIO10 SPI0_MOSI	GPIO9 SPIO_MISO	GPIO11 SPI0_SCLK	Ground	ID_SD I2C ID EEPROM	GPIO5	GP106	GPI013	GP1019	GP1026	Ground	

Definition

Embedded system:

- is a system whose principal function is not computational,
- but which is controlled by a computer embedded within it.

Examples: Refrigerator

Examples: Car Door

Examples: Electronic Pingpong

Examples: Derbot Autonomous Guided Vehicle

Computer Essentials

MCU chip

- Harvard Architecture
- Instruction Pipelining
- Long Word Instructions
- Single Cycle Instructions
- Single Word Instructions
- Large Register File
- Reduced Instruction Set
- Orthogonal Instruction Set

MCU - Architecture

Program Memory

- Fetches instructions and data from a single memory space
- Limits operating bandwidth

Harvard Architecture:

- Uses two separate memory spaces for program instructions and data
- Improved operating bandwidth
- Allows for different bus widths

MCU - Pipelining

Pipelining

- In most micro controllers, instructions are fetched and executed sequentially
- The pipelined architecture overlaps fetch and execution, making single cycle execution possible

In struction	on Cycles:	T _{C Y} = 0	T _{c y} = 1	T _{C Y} = 2	T _{C Y} = 3	T _{C Y} = 4	T _{C Y} = 5
• M O V L W	0 x 5 5	Fetch 1	Execute 1				
● MOVWF	PORTB		Fetch 2	Execute 2			
• CALL	S U B			Fetch 3	Execute 3		
● B S F	P O R T A ,3				Fetch 4	Flush	
• Instruction	@ \$ U B					Fetch SUB	Execute SUB

MCU - Register File Concept

Register File Concept

- Register File Concept: Unlike other RISC processors, all of data memory is part of the register file, so any location in data memory may be operated on directly
- All peripherals are mapped into data memory as a series of registers
- Orthogonal Instruction Set:
 ALL instructions can operate on ANY data memory location
- The Long Word Instruction format allows a directly addressable register file

PIC16F877 - Caratteristiche

Caratteristiche principali

- Velocita` massima: 20Mhz
- Fino a 8K words (da 14bit)
- Pinout compatibile con altri PIC16
- Internal timers (8bit e 16bit)
- PWM (capture, compare)
- SSP (SPI o IIC)
- USART
- PSP (slave)
- Brown-out detection

- 10bit A/D converter
- Brown-out reset
- Comparatore analogico
- 256byte internal data EEPROM
- Oscillatore configurabile
- ICSP (debug/ICD)
- Protezione del codice
- Watch-dog timer
- Modalita` SLEEP

Computer Essentials

- Instruction Sets
 - CISC: Complex Instruction Set Computer
 - RISC: Reduced Instruction Set Computer

- Memory Types
 - Volatile: Random Access Memory (RAM)
 - Non-volatile: Read Only Memory (ROM)

Von Neumann and Harvard Computers

Microprocessors and Microcontrollers

 The microprocessor is a processor on one silicon chip.

- The microcontrollers are used in embedded computing.
- The microcontroller is a microprocessor with added circuitry.

Microcontrollers

Microcontroller Packaging and **Appearance**

24

From left to right: PIC 12F508, PIC 16F84A, PIC 16C72, Motorola 68HC05B16, PIC 16F877, Motorola 68000 Dr Gheith Abandah

PIC Microcontrollers

- Peripheral Interface Controller (PIC) was originally designed by General Instruments
- In the late 1970s, GI introduced PIC® 1650 and 1655 – RISC with 30 instructions.
- PIC was sold to Microchip
- Features: low-cost, self-contained, 8-bit, Harvard structure, pipelined, RISC, single accumulator, with fixed reset and interrupt vectors.

PIC Families

PIC Family	Stack Size	Instruction Word Size	No of Instructions	Interrupt Vectors
12CX/12FX	2	12- or 14-bit	33	None
16C5X/16F5X	2	12-bit	33	None
16CX/16FX	8	14-bit	35	1
17CX	16	16-bit	58	4
18CX/18FX	32	16-bit	75	2

^{&#}x27;C' implies CMOS technology; Complementary Metal Oxide Semiconductor

<u>Example</u>: 16C84 was the first of its kind. It was later reissued as the 16F84, incorporating Flash memory technology. It was then reissued as 16F84A.

^{&#}x27;F' insert indicates incorporation of Flash memory technology

12 Series PIC

The small 12F508

PIC 12F508/509 pin connection diagram

Key

V_{DD}: Power supply V_{SS}: Ground

V_{PP}: Programming voltage input MCLR: Master clear

OSC1, OSC2: Oscillator pins CLKIN: External clock input

GP0 to GP5: General-Purpose input/output pins (bidirectional except GP3)

CSPDAT: In-Circuit Serial Programming[™] data pin. CSPCLK: In-Circuit Serial Programming[™] clock pin.

The 12F508 Architecture

Summary

- An embedded system is a product that has one or more computers embedded within it, which exercise primarily a control function.
- The embedded computer is usually a microcontroller: a microprocessor adapted for embedded control applications.
- Microcontrollers are designed according to accepted electronic and computer principles, and are fundamentally made up of microprocessor core, memory and peripherals.
- Microchip offers a wide range of microcontrollers, divided into a number of different families. Each family has identical central architecture and instruction set. However, common features also appear across all their microcontrollers.
- The Microchip 12F508 is a good microcontroller to introduce a range of features of microcontrollers in general and of PIC microcontrollers in particular.