Le Macchine Combinatorie

Calcolatori Elettronici

L'algebra di Boole - richiami

Operazioni fondamentali sui bit:

```
x AND y
0
    0
            Congiunzione
            x AND y si indica anche con x · y
        <u>x OR y</u>
0
    0
            Disgiunzione
            x OR y si indica anche con x + y
 NOT x
                Negazione
            NOT x si indica anche con x
0
```

L'algebra di Boole - alcune proprietà (1)

Proprietà commutativa:

$$x AND y = y AND x$$
 $x OR y = y OR x$

Proprietà associativa:

```
(x AND y) AND z = x AND (y AND z)
(x OR y) OR z = x OR (y OR z)
per la propr. associativa posso definire AND e OR a più di due operandi (es. x AND y AND z)
```

• Proprietà di idempotenza e assorbimento:

```
x AND x = x x OR x = x

x AND (x OR y) = x x OR (x AND y) = x
```

L'algebra di Boole - alcune proprietà (2)

Proprietà distributiva

$$x AND (y OR z) = (x AND y) OR (x AND z)$$

 $x OR (y AND z) = (x OR y) AND (x OR z)$

Proprietà di convoluzione

$$NOT(NOT x) = x$$

· Proprietà del minimo e del massimo:

```
x AND 1 = x x AND 0 = 0

x OR 0 = x x OR 1 = 1
```

Leggi di De Morgan:

NOT
$$(x AND y) = (NOT x) OR (NOT y)$$

NOT $(x OR y) = (NOT x) AND (NOT y)$

Funzioni booleane

y = $f(x_1, x_2, ..., x_n)$ è una funzione booleana se ad ogni ennupla di valori booleani $x_1,...,x_n$ associa un valore booleano y

Due esempi:

<u>X</u> ₁₋		<u>X</u> 2_	$f(x_1,x_2)$			<u>X</u> 1	X ₂	$f(x_1,x_2)$
0	0	0	0	0	1			
0	1	1	0	1	0			
1	0	1	1	0	0			
1	1	0	1	1	1			

Questa funzione è detta OR esclusivo, o XOR

Questa funzione è detta equivalenza, o EQU

Anche AND, OR e NOT sono funzioni booleane. Esse vengono dette *funzioni fondamentali* dell'algebra

Insiemi funzionalmente completi

Si può dimostrare che qualsiasi funzione booleana può essere calcolata applicando le funzioni AND, OR, e NOT. Ad esempio:

x XOR y = (x AND NOT y) OR (y AND NOT x)Per questo, l'insieme {AND, OR, NOT} si dice *funzionalmente completo*.

Esistono altri insiemi funzionalmente completi. Si noti che grazie alle leggi di De Morgan si può costruire la AND da {OR, NOT}, oppure la OR da {AND, NOT}. Quindi anche {AND, NOT} e {OR, NOT} sono insiemi funzionalmente completi.

Reti logiche

I valori booleani possono essere rappresentati da grandezze elettriche. Ad esempio:

0 <=> tensione di 0 Volt

1 <=> tensione di +5 Volt

In tal caso le funzioni booleane possono essere realizzate mediante circuiti elettronici detti *reti logiche*.

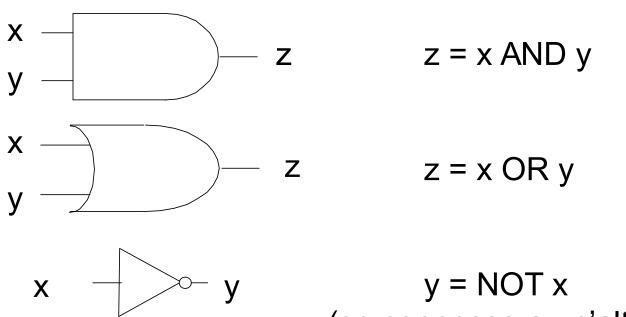
Nelle reti logiche *unilaterali*, leuscite della rete corrispondono a valori di grandezze elettriche misurate in opportuni punti del circuito; il flusso dell'elaborazione procede fisicamente in un'unica direzione, dai segnali di ingresso verso i segnali di uscita.

Nelle reti logiche *bilaterali*, invece, l'uscita della rete è determinata dalla presenza o dall'assenza di "contatto" tra due punti della rete.

Porte logiche (gates)

Circuiti logici elementari che realizzano le operazioni fondamentali. Le reti logiche si costruiscono connettendo più porte logiche.

Simboli delle principali porte logiche:



(se connesso a un'altra porta, il NOT si indica talora con un semplice pallino)

Operatori logici generalizzati (1)

Dato un vettore di variabili booleane $X = (x_1, x_2, ..., x_n)$, e una variabile booleana α , indicheremo con la notazione:

$$Y = \alpha OP X$$
 (dove OP è un operatore booleano)

l'operazione che produce il vettore booleano Y così definito:

$$Y = (y_1, y_2, ..., y_n) \text{ con}$$

$$y_1 = \alpha OP x_1$$

$$....$$

$$y_n = \alpha OP x_n$$

Esempio:

 α AND X ha come risultato il vettore formato da: $(\alpha \text{ AND } x_1, \alpha \text{ AND } x_2, ..., \alpha \text{ AND } x_n)$

Operatori logici generalizzati (2)

Dati due vettori di variabili booleane $X = (x_1, x_2, ..., x_n)$ e $Y = (y_1, y_2, ..., y_n)$ indicheremo con la notazione:

Z = X OP Y (dove OP è un operatore booleano)

l'operazione che produce il vettore booleano Z così definito:

$$Z = (z_1, z_2, ..., z_n) \text{ con}$$

$$z_1 = x_1 OP y_1$$

$$...$$

$$z_n = x_n OP y_n$$

Esempio:

X OR Y ha come risultato il vettore formato da:

$$(x_1 OR y_1, x_2 OR y_2, ..., x_n OR y_n)$$

Macchine combinatorie (1)

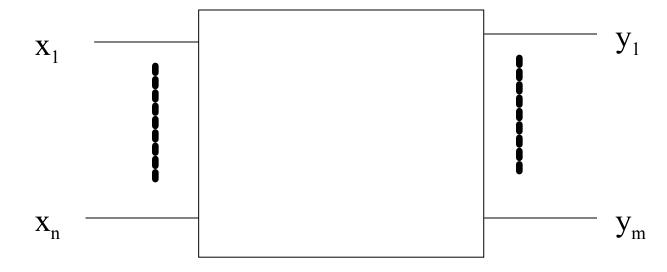
Reti logiche con n ingressi $x_1, x_2, ..., x_n$ e m uscite

y₁, y₂, ..., y_m che realizzano la corrispondenza:

$$y_1 = f_1(x_1, x_2, ..., x_n)$$

.

$$y_m = f_m(x_1, x_2, ..., x_n)$$



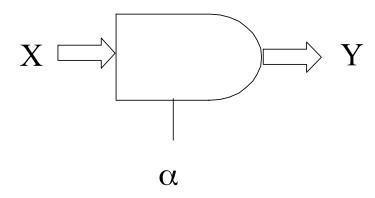
Macchine combinatorie (2)

In una macchina combinatoria i valori delle uscite dipendono esclusivamente dai valori degli ingressi.

In una macchina combinatoria ideale tale dipendenza è istantanea; in una macchina reale c'è sempre un ritardo tra l'istante in cui c'è una variazione in uno degli ingressi e l'istante in cui l'effetto di questa variazione si manifesta sulle uscite.

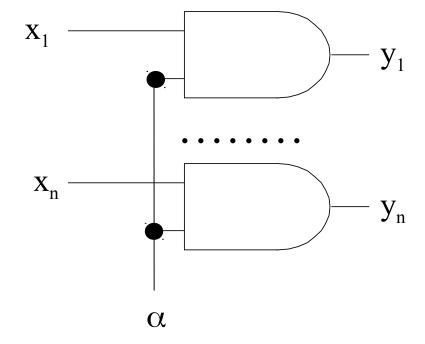
Porte logiche generalizzate (1)

Rappresentazione simbolica:



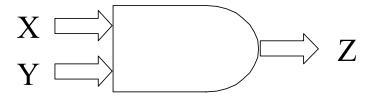
$$Y = \alpha AND X$$

Circuito equivalente:



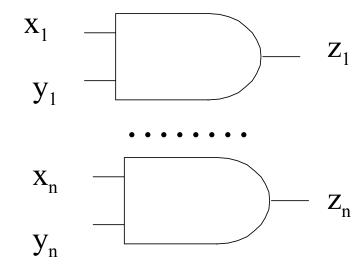
Porte logiche generalizzate (2)

Rappresentazione simbolica:



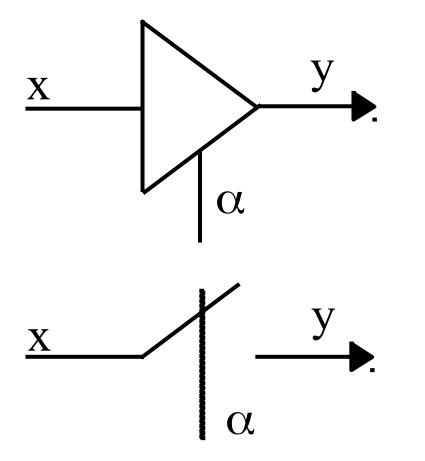
$$Z = X AND Y$$

Circuito equivalente:



AND tristate

È la tecnica più diffusa per realizzare il collegamento di più registri "sorgenti" verso un bus comune



α	X	y
0	1	Z
1	1	1
0	0	Z
1	0	0
0	Z	Z
1	Z	Z

Codifica in Binario

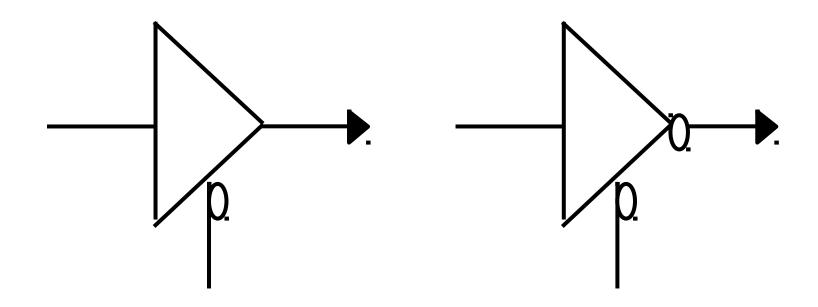
 Dato un insieme di N elementi il numero minimo m di bit necessario alla codifica è dato da

$$m \geq \{[log_2 N]\}$$

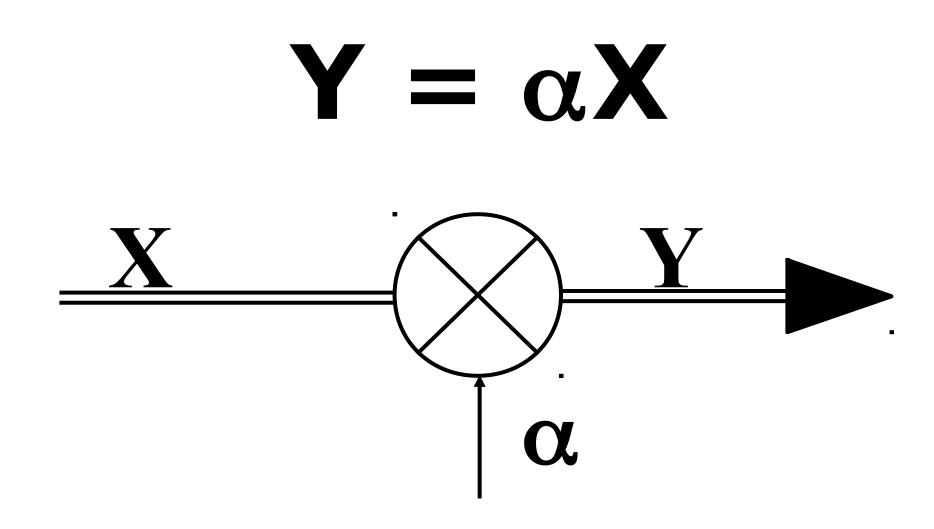
AND tristate - Esempi

➤ AND tristate con abilitazione 0-attiva

AND tristate invertente

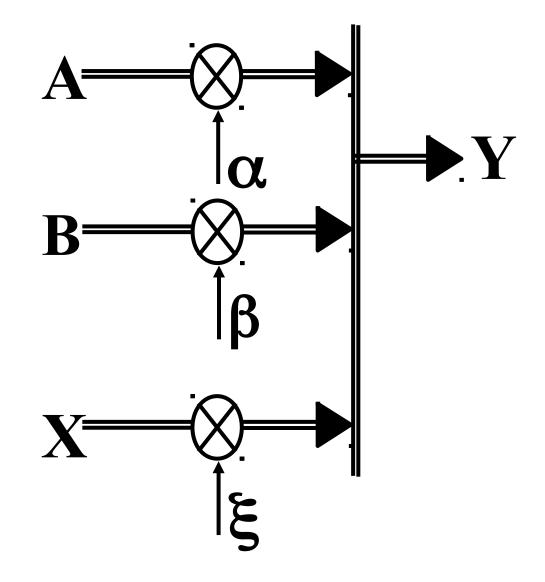


Abilitazione di un bus



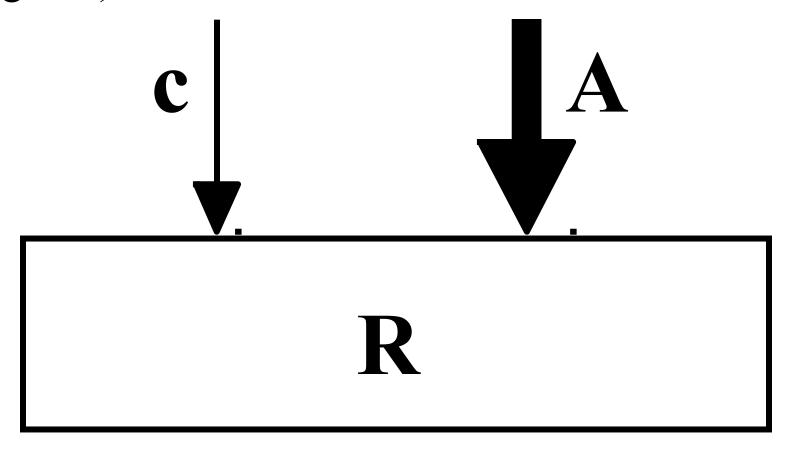
OR di bus

- Connessione
 delle sorgenti,
 ciascuna
 sostenuta da un
 buffer tristate
- Realizza il collegamento di più registri in uscita verso un bus



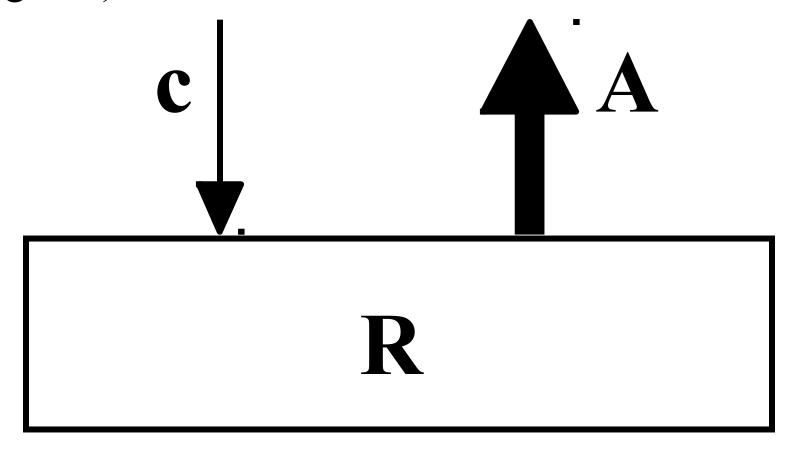
Trasferimento dati su bus unico -1/2

Trasferimento da bus a registro (caricamento di un registro)

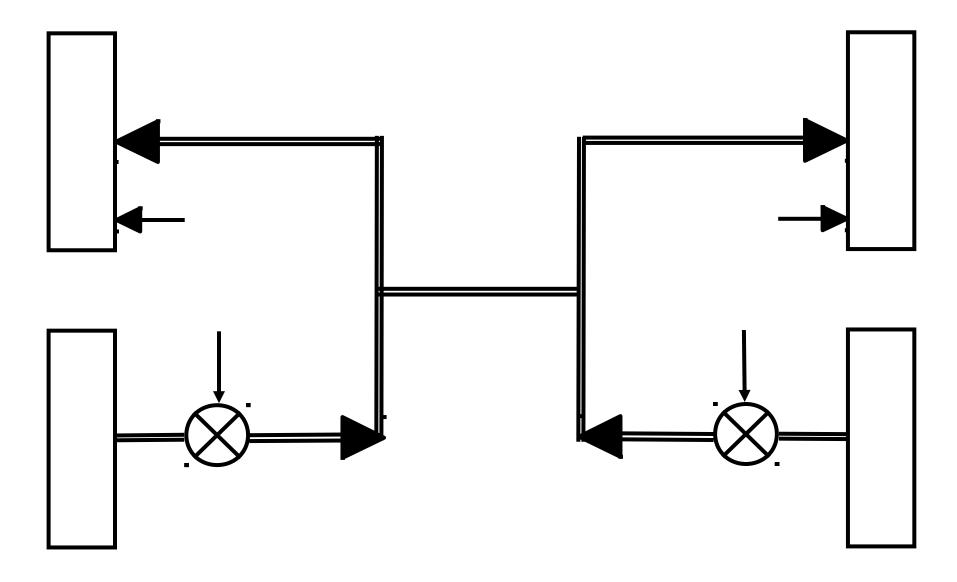


Trasferimento dati su bus unico -2/2

Trasferimento da registro a bus (caricamento da un registro)



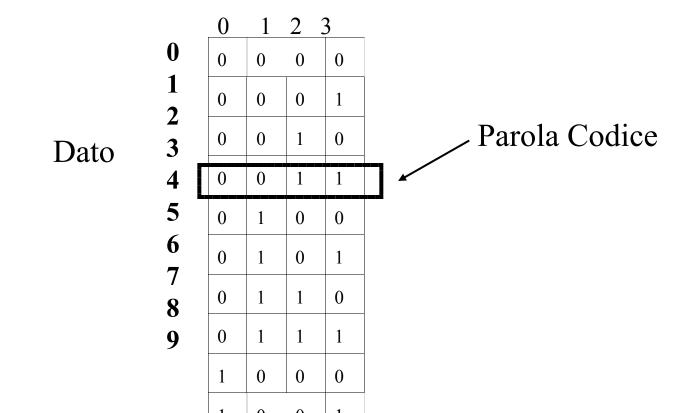
Bus bidirezionali



Rappresentazione di Codici mediante tabelle

 $T=(x_1,x_2,...,x_n)$ alfabeto origine $E=(a_1,a_2,...,a_k)$ alfabeto destinazione

Es. Codice BCD



Rappresentazione Decodificata

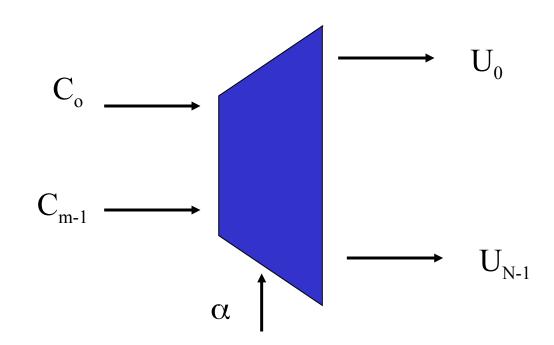
 Laddove il numero m di bit utilizzati per codificare un insieme di cardinalità N è pari ad N (m=N), ed ad ogni parola codice è associato un solo bit 1 otteniamo una rappresentazione decodificata

Es.

Dato	Codice BDC	Codice Decodificato
0	0000	10000000
1	0001	01000000
2	0010	001000000
3	0011	000100000
• • •	• • •	• • •
• • •		
9	1001	00000001

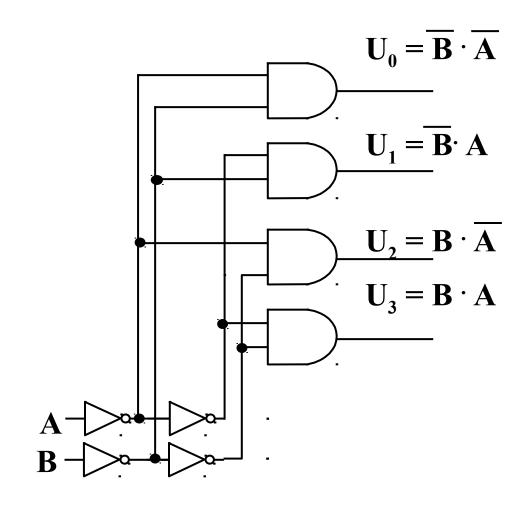
Decodificatore (decoder)

 Un decodificatore è una macchina che riceve in ingresso una parola codice (C) e presenta in uscita la sua rappresentazione decodificata (linee U₀, U_{N-1})

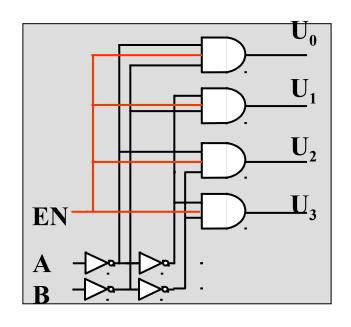


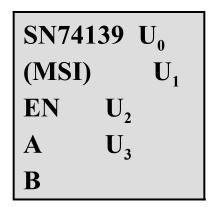
Sintesi della trascodifica da binario **a 1 su N**Esempio: Trascodifica 2:4

В	A	$\mathbf{U_0}$	$\mathbf{U_1}$	$\mathbf{U_2}$	\mathbf{U}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1



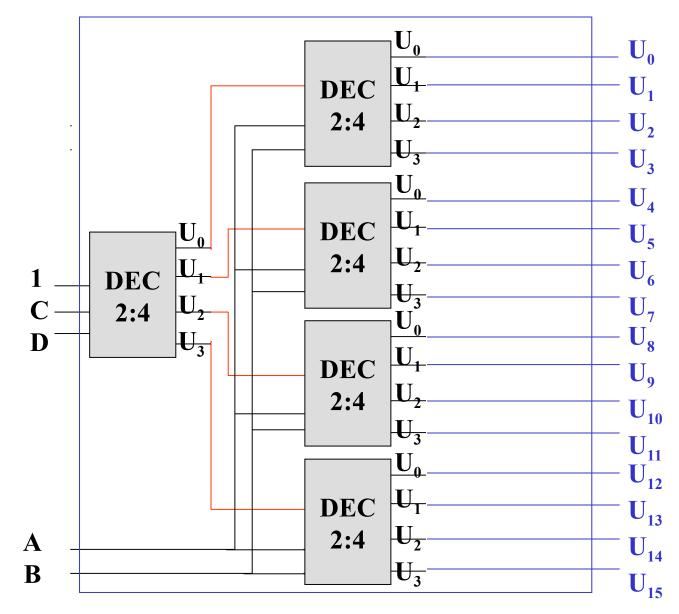
Il circuito integrato DECODER





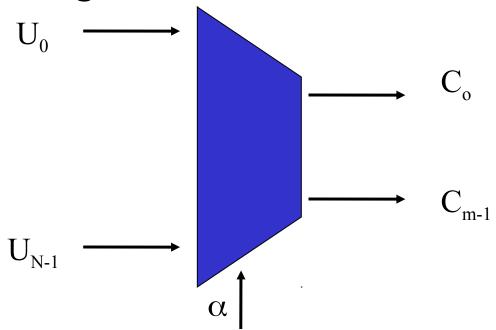
Quando EN=1 (segnale di abilitazione), vale 1 l'uscita il cui pedice, in decimale, corrisponde al numero binario in ingresso (A bit di minor peso)

Composizione modulare di Decoder 4:16



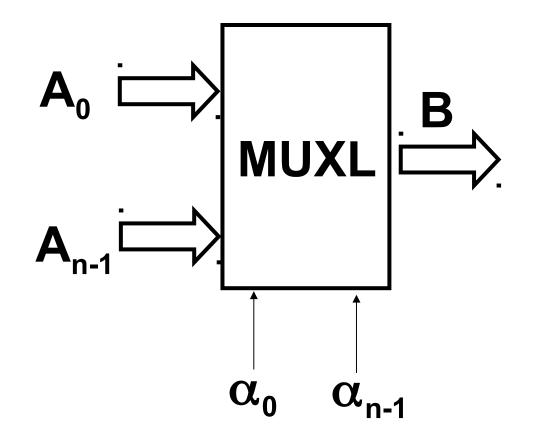
Codificatore (Encoder)

 Un codificatore è una macchina che riceve in ingresso una rappresentazione decodificata (linee U₀, U_{N-1}) e fornisce in uscita la parola codice associata a U_i se U_i=1 (più in generale se è attivo)



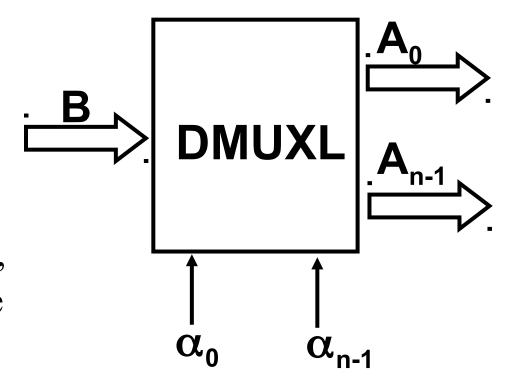
Multiplexer lineare

- Macchina con:
 - » n ingressi-dati $(A_0,...,A_{n-1})$
 - » n segnali binari di selezione ($\alpha_0, ..., \alpha_{n-1}$), dei quali al più uno è attivo
 - » una uscita-dati B, che assume il valore A_i se è attivo α_i, è neutro se nessuna delle selezioni è attiva



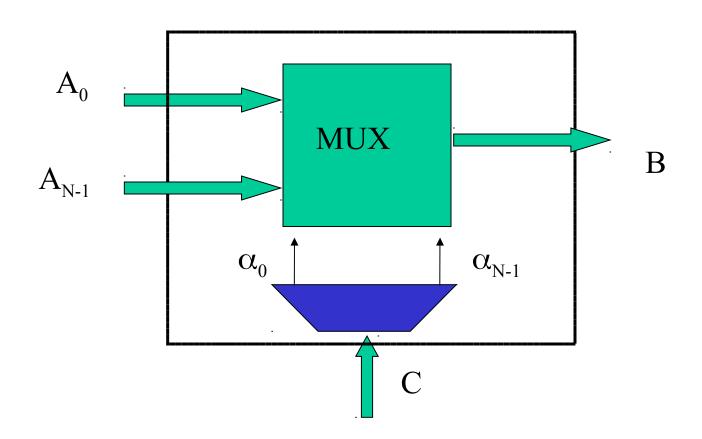
Demultiplexer lineare

- Macchina con:
 - » 1 ingresso-dati B
 - » n segnali binari di selezione ($\alpha_0, ..., \alpha_{n-1}$), dei quali al più uno è attivo
 - » n uscite-dati $(A_0,...,A_{n-1})$, con A_i =B se è attivo α_i , è neutro se nessuna delle selezioni è attiva



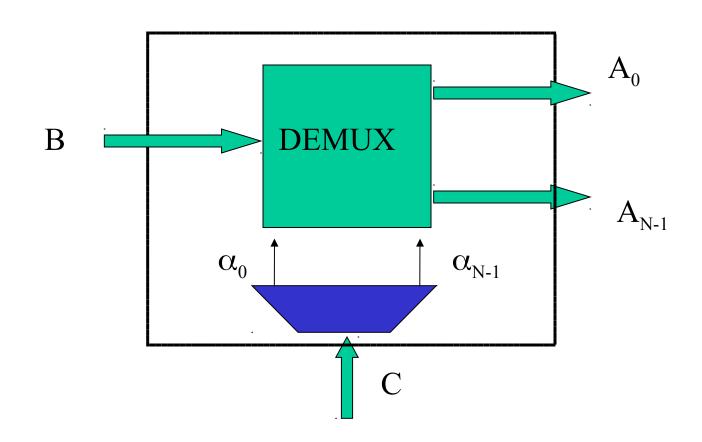
Multiplexer Indirizzabile

 E' un multiplexer i cui segnali di abilitazione sono collegati con le uscite di un decodificatore

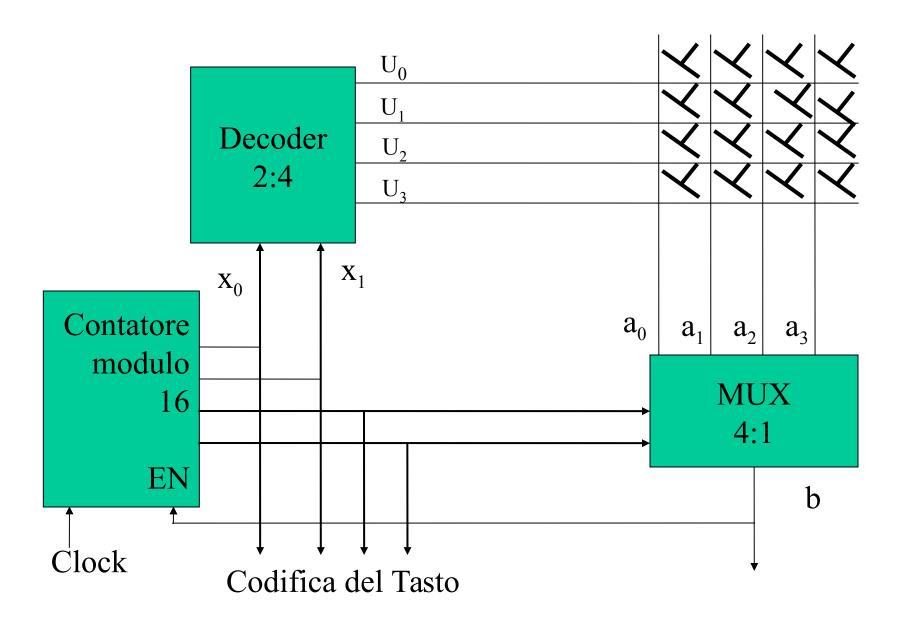


Demultiplexer Indirizzabile

• E' un Demultiplexer i cui segnali di abilitazione sono collegati con le uscite di un decodificatore



Implementazione di una tastiera



- Le 4 uscite del contatore sono usate per scorrere la matrice 4x4 dei tasti:
 - i primi 2 bit costituiscono l'ingresso del decodificatore da cui uscirà una combinazione di 4 bit dove un solo bit è posto a 1 (tale bit identificherà la riga della matrice)
 - Gli altri 2 bit sono invece gli ingressi del multiplexer e codificano la colonna da esaminare
- Se il tasto in corrispondenza della coppia (riga, colonna) esaminata è stato premuto, allora il multiplexer restisuisce b=1.
 Contemporaneamente, la codifica del tasto (che corrisponde allo stato del contatore) è disponibile.
- Il contatore rimane fermo fin quando il tasto viene premuto.